作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,教案是教学活动的依据,有着重要的地位。快来参考教案是怎么写的吧!为大家精心整理了小学五年级数学教案【优秀8篇】,希望能够给予您一些参考与帮助。
●学习目标
1、初步理解除数是整数的小数除法的含义,根据已有的生活经验和知识基础,探究除数是整数的小数除法的计算方法。
2、初步理解和掌握除数是整数的小数除法的计算方法,会计算除数是整数的小数除法问题
3、能初步利用等量划分(包含除)与平均分(等分除)来解决日常生活中的一些简单问题。
4、进一步理解“倍”的含义,知道两个量的关系有时可用“小数倍”表示。
●重点难点
学习重点:除数是整数的小数除法的计算方法。
学习难点:小数除以整数中“商与被除数小数点对齐”;除到被除数末尾有剩余,在剩余部分后面添0,再继续除。
●教材知识讲解
例1、买3千克黄瓜要5.28元,每千克黄瓜售多少元?
分析与解答:
根据我们的生活,知道5.28元不到6元,因此黄瓜每千克的售价不到2元。又:黄
瓜的单价=黄瓜总价÷数量,因此列出除法算式:5.28÷3
5.28÷3怎样计算呢?
方法1:5.28元=528分528÷3=176(分)176分=1.76元
方法2:5.28元里有528个0.01元,528÷3=176(个)
就是说每千克是176个0.01元,是1.76元
两种方法算得的结果一样,接近我们的估测,而且两种方法都采用了整数除法计算,
我们尝试用竖式计算:
点拨:如果除到被除数末尾有剩余,在剩余部分后面补0继续除。
例3、有3.5千克葡萄干,平均分给7人,每人可分多少千克?
分析与解答:
3.5÷7,显然,每人分到的不足1千克,整数部分不够分,怎么办?
我们把3.5千克转化成3500克计算,3500÷7=500(克),500克=0.5千克。
用竖式计算:
●方法与技巧
1、除数是整数的小数除法,按整数除法的方法计算,商的小数点要和被除数的小数点对齐;
如果除到被除数末尾有剩余,在剩余部分后面补0继续除。
2、被除数的整数部分比除数小时,在个位上直接商0,点上小数点,再按整数除法的方法
继续算。
3、求大的量是小的量的几倍时,不仅可以用整数倍,还可用“小数倍”表示。
3、应用
(1)甲、乙两地相距180千米,一辆汽车从甲地开往乙地每小时行48千米,几小时后可以到达?
(2)甲种巧克力每千克售65.8元,乙种巧克力每千克售47元。甲种巧克力的单价是
乙种巧克力单价的几倍?
自我检测参考答案
1、1.2,0.003,1.525,0.25
2、 8.1,5.4,0.029,0.065,0.45,0.035
3、(1)180÷48=3.75(小时)
(2)65.8÷47=1.4
教学目标:
1、借助已有经验,理解小数乘小数的算例,掌握基本算法。理解因数与积之间的大小关系。
2、提高运用转化的方法解决新问题的能力,发展学生的运算及推理能力
3、感受小数乘整数与现实生活的联系,激发学生学习数学的兴趣
教学重难点:
教学重点:小数乘小数的算理、算法
教学难点:小数乘小数计算中积的小数位数和小数点位置的确定
一、复习导入,新知铺垫
1、师:上一节课我们一起学习了小数×整数的计算方法,老师这里有一道题,“4.6×8”你们能算出来吗?快拿起课堂练习本算一算。
2、师:你们是怎样计算的?
预设:把4.6扩大10倍得46,积也就扩大了10倍。46×8=368,积368缩小10倍变回原来的积368÷10=36.8。
3、师:我们通过将小数转化为整数,成功解决了小数×整数的问题。那小数×小数呢?你们会计算吗?那这节课我们就一起研究小数×小数的问题,
二、自主探究,深入新知
1、师:接下来请你们以小组为单位列出三道算式,等会我们挑选一组同学的算式为本节课的研究对象。在列算式时要注意小数不宜过长,不然不方便计算。
预设:2.4×0.8(一位×一位)、1.92×0.9(两位×一位)、0.45×0.6(两个小数都不大于1)
2、师:这三道题你们会计算吗?拿起练习本,尝试独立计算。如果遇到问题可以小声地与同桌交流。
3、学生独立活动,指名扮演
3、师:这三个不同的算式都是怎样计算的?
预设:根据积的变化规律,先将小数乘法转化为整数乘法算出积。因数扩大,积也就扩大了相应倍数。要求原来的积,就应把乘出来的积缩小相应倍数。
4、师:那看来小数×小数的计算难不倒同学们。先按照积的变化规律将小数乘法转化为整数乘法算出积,再将得到的积缩小相应倍数得到原来的积。
5、师:那同学们你们仔细观察这三道题有什么不同有什么相同?再与同桌交流交流。
预设:它们的相同点在于都是小数×小数;不同点在于第一道算式是一位小数乘一位小数,第二道算式和第三道算式是两位小数×一位小数。
6、师:仔细观察因数和积的小数位,说说你有什么发现?
预设:第一个竖式中,两个因数中一共有2位小数,积也是2位小数;后面2个竖式中,两个因数中一共都有3位小数,而它们的积都是3位小数。我发现在小数乘法中积的小数位数等于两个因数的小数位数总和。
10、师:在计算小数乘法时,我们可以先将小数乘小数转化为整数乘整数算出积,然后根据因数中小数的位数确定积中小数点的位置。
三、聚焦问题,突破难点
1、探究乘得的积的小数位数不够时,怎么点小数点。
(1)出示例4:0.56×0.04
师:这道题你能运用小数乘法的计算方法来计算下面这道题吗?
(2)学生独立计算,教师巡视
(3)师:在计算的过程中,你们遇到了什么新问题?
预设:0.56是两位小数,0.04也是两位小数,那积应该是四位小数,可是现在乘得的积224是一个三位数,乘得的积的小数位数不够点小数点。
(4)师:乘得的积的小数位数不够时,怎样点小数点?可以借助之前学过的知识帮助我们解决这个问题吗?
预设:利用之前学过的“小数点移动引起小数大小变化的规律”,当乘得的积的小数位数不够时,在积的前面用0来补足小数位数,再点上小数点。
2、探究积与因数的大小关系
(1)出示:“做一做”第2题完成版本
师:看来同学们对小数乘小数的计算都掌握了。接下来请同学们仔细观察这两组算式,将每组题的计算结果和第一个因数进行比较,与同桌交流你有什么发现。
(2)全班交流、总结规律
预设:通过观察,第一组乘法算式中,第一个因数2.4不变,第二个因数都>1,乘得的积都>2.4;第二组乘法算式中,第一个因数1.2不变,第二个因数都<1,乘得的积都<1.2。我发现一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。因为0乘任何数都得0,所以这个数不能是0。
四、梳理反思,内化提升
1、师:通过本节课的学习,你们有怎么样的收获?
2、师:本节课我们学习并总结了小数乘法的计算方法“在计算小数乘法时,我们可以先将小数乘小数转化为整数乘整数算出积,然后根据因数中小数的位数确定积中小数点的位置。当积的位数不够时要在前面用0补足,再点小数点”,还知道了积与因数的大小关系。我们通过自主探索,将小数×小数转化为整数×整数进行思考。再一次成功借助旧知识帮忙解决了新问题。
教学目标:
1、使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。
2、学会找出生活问题中相等的数量关系,正确列出方程。
3、培养学生根据具体情况,灵活选择算法的意识与能力。
4、培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感。
教学重点:
用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题。
教学难点:
分析问题中的等量关系,并会列出方程解答。
教学准备:
多媒体课件。
教学过程:
一、知识回顾:
1、解下列方程。
X+2x=147 y-34=71
2、根据下面叙述说说相等关系,并写出方程。
①公鸡x只,母鸡30只,是公鸡只数的2倍。
②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。
3、(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密。小军发现……小华发现……小刚提出……
(足球上黑色的皮都是五边形,白色的皮都是六边形的。黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)
让学生独立做,集体订正时,(板书线段图)。
二、合作探究:
1,教学例1(媒体出示教材情景图)。
"足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"
(1)审题,寻找解决问题的有用信息。
提问:"例题与复习题有什么相同的地方" "有什么不同的地方"
教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题。今天我们学习用方程解答这类问题。
教师板书:稍复杂的方程
(2)分析,找出数量之间的相等关系(教师板书线段图讲解)
看图思考:白色皮和黑色皮有什么关系
学生小组讨论,汇报结果。
可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
(3)同桌讨论怎样列出方程。
(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。
板书学生的方程并选择2x-4=20讨论它的解法。
学生小组讨论解法。
汇报交流板书:
解:设共有x块黑色皮。
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
检验:(引导先生口头检验)
答:共有12块黑色皮
(5)学生选择其余的方程解答。
2,变式练习。
(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答。
(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易。
3,引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析,找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答案。
三,巩固应用
1,只列式不计算。(课件出示)
①图书室有文艺书180本,比科技书的2倍多20本,科技书x本。
②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。
③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。
④一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。
2,学生独立完成,集体汇报交流
①北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米
②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米
③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km
④共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒
3,拓展提高。
①甲乙两数的和是90,甲数是乙数的2倍。甲乙两数各是多少
②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少
四、全课总结
今天这节课你学到了什么知识
板书设计:
先把2x看作一个整体
教学目标:
知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。
教学重点:
用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)
教学难点:
学生对于题意的理解。
教学过程:
一、导入阶段
出示
小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。
(1)在这段文字叙述中你获得了哪些信息
上午9时15分在动物园门口集合;
早晨7时48分出门;
路上用了1小时23分。
(2)9时15分、7时48分、1小时23分各表示什么,有什么不同?
9时15分、7时48分表示时刻,是指某一事件发生的时候。
1小时23分表示时间,是指某一事件经过了多久。
(3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?
是求时刻
(4)今天我们就要来讨论关于时间的计算的问题。(出示课题)
[对于学生经常会混淆的“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]
二、中心阶段
1、请学生试着计算。
2、汇报
(1)画图
(2)竖式算
注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。
答:小丁丁9时11分到达动物园门口。
3、比较2种方法得出2种方法都很好,都很直观、很简洁。
4、小结
我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。
三、练习阶段
7时50分+45分=()时()分
8时26分+2小时37分=()时()分
15分18秒+3分52秒=()分()秒
教学目标
1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.
2.理解用字母表示数的意义.
3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.
4.使学生学会应用字母公式求值.
教学重点
用字母表示运算定律和公式;根据字母公式求值.
教学难点
理解一个数的平方的含义,乘号的简写和略写.
教学过程
一、铺垫孕伏
(一)在下面的□里填上适当的数,并说明根据什么.
18+34=34+□
(35+55)+45=357+(□+□)
35×□=59×□
(1.2×2.5)×4=1.2×(□×□)
(4+8)×□=□×3.5+□×□
二、探究新知
(一)教学用字母表示运算定律.
1.学生叙述各运算定律的内容,并用字母公式表示出来.
教师板书
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法分配律:
2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?
优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.
(二)教学用字母表示计算公式.
1.教学用字母表示图形面积公式(出示图片:图形面积公式)
(1)表示正方形的面积,表示正方形的边长.
(2)表示平行四边的面积,、分别表示平行四边形的底和高.
(3)表示三角形的面积,、分别表示三角形的底和高.
(4)表示梯形的面积、、分别表示梯形的下底和高.
2.教学一个数的平方的含义及正方形周长的书写格式.
(1)读出下面各式,并说明表示的意义.
(2)把下面各式写成一个数的平方的形式.
5×5
(3)省略乘号,写出下面各式.
(4)根据运算定律在□填上适当的字母或数.
(□+□)+□
□·(□·□)
(5)如果用表示长方形的长,表示宽,那么
这个长方形的面积_____________________,
这个长方形的周长_____________________.
教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:
不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.
3.教学例1.
例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.
教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算
出的结果就是它的面积或周长.
(1)说出梯形的面积公式.
(2)说出梯形面积公式中每一字母表示的意义.
(3)说出字母所代表的数值.
(4)学生尝试解答.
教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.
(5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?
三、课堂小结
今天这节课学习了什么知识?
四、课后作业
(一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.
(二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.
1.一个长方形,长7.2厘米,宽1.8厘米.
2.一个正方形,边长24毫米.
五、板书设计
用字母表示运算定律和计算公式
运算定律
计算公式
可以写成
读作:的平方
表示:两个相乘
例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.
=(3.5+5.5)×4÷2
=9×4÷2
=18
答:梯形的面积是18平方厘米.
探究活动
找规律
活动目的
1.能正确用含有字母的式子表示数量.
2.培养学生的抽象思维能力和概括能力.
活动题目
仔细观察,发现规律,得出结论,然后填空.
35=3×10+5702=7×100+0×10+2
72=7×10+2123=1×100+2×10+3
16=1×10+6564=5×100+6×10+4
…………
1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().
2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().
数学教案-用字母表示运算定律和公式
活动过程
1.学生分小组讨论.
2.汇报思考过程和答案.
3.仿照题目类型,每个小组自编一组练习,相互交换解答.
参考答案
1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).
2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).
教学目标
1.理解除数是小数的除法的算理,掌握除数是小数的计算法则
2.培养学生的计算能力
教学重点
掌握除数是小数的除法的计算法则
教学难点
理解把除数是小数的除法转化为整数除法的道理
教学过程
一、铺垫孕伏
(一)指名板演,集体订正:5628÷67
(二)演示课件:商不变的性质
(三)教师导入:除数是整数的除法,我们已经掌握了它的计算方法,那么除数是小数的
除法该怎样计算呢?这节课我们就来解决这个问题.
(板书课题:除数是小数的除法)
二、探究新知
(一)教学例4
1.演示课件:一个数除以小数
2.尝试不同思路(把题里的米数都改写成厘米数来计算)
56.28米=5628厘米
0.67米=67厘米
5628÷67=84(条)
教师说明:这种方法是正确的,但是有一定的局限性
3.思考:为什么要把除数和被除数都扩大100倍呢?扩大1000倍可以吗?
4.练习:继续演示课件:一个数除以小数
5.计算除数是小数的除法的关键是什么?转化时以谁为标准?
6.小结计算方法
计算除数是小数的除法,先移动除数的小数点,使它变成整数.看除数的小数
点向右移动几位,被除数的小数点也向右移动几位,然后按除数是整数的除法法则进行计算.
(二)教学例5
例5
10.5÷0.75
1.学生试算
2.集体订正
教师强调:(1)位数不够用“0”补足.
(2)商的小数点和被除数的小数点对齐.
3.练习
51.3÷0.27
26÷0.13
(三)总结除数是小数的小数除法的计算法则
除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右
移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算.
三、课堂小结
这节课我们学习了什么?除数是小数的除法和除数是整数的小数除法有什么联
系?通过今天的学习,你有什么收获?
四、课堂练习
(一)填空
除数是小数的除法,先移动_____小数点,使它变成整数;除数的小数点向右移动
几位,_____也向右移动几位,位数不够的,在被除数的末尾_____补足;然后按照除数是_____的小数除法进行计算.
(二)把下面的题变成除数是整数的除法
4.68÷1.2=□÷12
2.38÷0.34=□÷□
5.2÷0.32=□÷32
161÷0.46=□÷□
(三)计算下面各题
6.21÷0.03=
210÷1.4
1.104÷2.4
五、布置作业
(一)计算下面个题.
19.76÷5.2
109.2÷0.42
8.4÷0.56
10.8÷4.5
6.825÷0.91
25.84÷1.7
(二)世界上最大的鸟是鸵鸟,体重达135千克,最小的鸟是蜂鸟,体重只有0.0016千克.鸵鸟的体重是蜂鸟的多少倍?
六、板书设计
一个数除以小数
例4做一条短裤要用布0.67米,56.28米布
例5计算
10.5÷0.75
可以做多少条短裤?
答:56.28米布可以做84条短裤
一个数除以小数(二)
教学目标
1、结合具体活动情况,经历测量石块体积的实验过程,操索不规则物体体积的测量方法。
2、在实践与操索过程中,偿试用多种方法解决实验问题。
教学重点
操索不规则物体体积的测量方法。
教学难点
偿试用多种方法解决实际问题。
教具准备
量杯、石块
教师指导与教学过程
学生学习活动过程
设计意图
一、创设情况,引入新知
1、出示石块
问:如何测量石块的体积?
极书课题。
2、以小组为单位,先制高测量方案,再实实实际测量,能直接用公式吗?
不能怎么办?
三、进行实验
1、将石块取入盛有一高水的长方体容器里,测量出容器的底面长、宽和小面高分别是多少/
2、放入石块前水高约18cm,放入石块后水面高30cm。石块的体积是多少?
学生观察石块
想一想,如何测量石块的体积。
学生动手测量
水面高、底面长、宽分别是多少?
(老师测量的让学生量出来)
学生口算出水面升高了12cm.
生:底面积乘高是石块的体积。
并且列式计算
学生可以做实验,也可以由老师做,学生观察,并说如何测量出石块的体积的第二种方法。
创设情景
激发学生学习新知的兴趣。
引志学生操索与体会测量不规则物体的体积的方法。
引导学生小组合作,制高测量方案,并进行实验测量。
教师指导与教学过程
学生学习活动过程
设计意图
师板书:
20×10×12=2400(cm3)
=2.4(dm3)
3、将石块放入盛满水的容器里。
三、试一试
1、在一个长方体容嚣里,测量一个苹果的体积。
2、测量一粒黄正折体体积
学生根据题中的二倍用“底面积×高”的方法计算。
放入石块前,容嚣里的水是满的,放入石堠后,溢出的水在水槽中,倒入量西湖里,有多少这亳升,就是石块的体积。
通过两个实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种,让学生运用在操索活动中得到测量的方法。
板书设计:
有趣的测量
小实验:测量石块的体积:小面高:30cm
底面长:20cm、宽10cm、高18cm30-18=12cm
底面积×高=体积200×12=2400(cm3)
20×10×18=3600(cm3)=2.4(dm3)
一、教学目标
(一)知识与技能
1、能根据统计表正确绘制单式折线统计图。
2、能根据折线统计图对数据进行分析,对数据的变化做出合理的推测,并能提出和解决数学问题。
(二)过程与方法
1、通过已有的统计经验迁移学习单式折线统计图。
2、通过条形统计图和折线统计图的比较,了解折线统计图的特点和优势。
(三)情感态度价值观
1、培养学生观察、分析数据和合理推测能力。
2、体会统计在生活中的作用和意义。
二、教学重难点
教学重点:认识单式折现统计图,了解折线统计图的特点和优势。会看、会绘制折线统计图,并能够根据折线统计图提出和解决数学问题。
教学难点:感悟折线统计图的特点,能对数据的变化做出合理的推测。
三、教学准备
多媒体课件。
四、教学过程
(一)新课导入
谈话:同学们喜欢机器人吗?参加过机器人大赛吗?
(二)复习旧知──条形统计图
1、教师:请同学们思考,从统计表里你得到了什么信息?(学生回答)
教师:刚才说的信息,大家能用我们学过的统计图表示出来吗?
教师引导学生思考:横轴表示什么,纵轴表示什么?根据数据的情况,第一个起始格应该表示多少?接下来一格代表多少合适呢?
2、根据学生的回答出示条形统计图。(课件演示)
3、教师:观察完成的条形统计图,哪一年参赛的队伍最多?哪一年参赛的队伍最少?这些问题都一目了然了。如此看来,条形统计图比统计表更加清楚、直观。
【设计意图】通过复习条形统计图的知识,为学习折线统计图做好准备。
(三)探索新知
1、认识折线统计图
(1)课件出示折线统计图。
教师:有一种比条形统计图更加“强大”的统计图,同学们想不想认识一下?请看大屏幕。
课件出示:中国青少年机器人大赛参赛队伍统计图(____—____年)。
教师:统计图还可以这样画。这种统计图叫做折线统计图,今天我们就来学习有关折线统计图的知识。(教师板书课题:折线统计图)
(2)初步体会折线统计图的绘制过程。
教师:我们首先来观察一下折线统计图的横轴与纵轴,与条形统计图相比,它们相同吗?(学生回答相同)
教师:想知道其中的折线是怎样画出来的吗?我们一起来看一下。
教师边介绍边描点,最后把这些点用线段顺次连接起来。(课件演示)
【设计意图】一方面使学生初步感知折线统计图的形成过程,满足学生的好奇心理。另一方面,学生通过观察、比较、交流,逐步得到绘制折线统计图的步骤和方法,为后面独立绘制折线统计图做好准备。