作为一名人民教师,就难以避免地要准备说课稿,编写说课稿是提高业务素质的有效途径。怎么样才能写出优秀的说课稿呢?
说教学目标:
1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。
2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。
3、情感态度与价值观:愿意对数学问题进行讨论,感受数学运算的合理性与结果运用的现实性,培养数学应用意识。
说重点、难点:
教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。
说教学准备:
多媒体,图形。
说教学过程:
一、复习导入
同学们,我们已经学习了哪几种平面图形的面积?
谁能说一说怎样求他们的面积?(学生自愿回答)
【设计意图:让学生复习长方形、正方形、平行四边形、三角形的面积公式,为下面的学习打下伏笔。】
二、探索新知
1、出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。第二块白布:长140分米,宽10分米。
9d
2、提出问题。
第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。
3、解决问题。
学生试算,教师巡视。了解学生计算的方法。
师:学生汇报计算的`结果。
生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。
135×9=1215(平方分米)
9×9÷2=40.5(平方分米)
1215÷40.5=30(块)
生:我列成了一个综合算式
(135×9)÷(9×9÷2)
生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用
135÷9×2=30(块)
【设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。】
师:同学们的做法很好,希望大家在做题的时候用不同的方法解决问题,提高自己的思维能力。
师:哪个组再汇报一下第二个问题的解决方法。
生:我们组用“总面积÷每块三角巾的面积”来做。
白布面积:140×10=1400(平方分米)
三角巾的面积:9×9÷2=40.5(平方分米)
可以做多少块三角巾:1400÷40.5≈34(块)
师:能做出34块吗?大家画图试一试。
学生画图,发现问题,小组讨论
师:同学们通过画图,发现了什么问题?
生:第二块白布的长、宽虽然比第一块长5分米、宽1分米,题中要求“不可拼接”,所以不能做出34块,只能用第2种方法,做30块。
生:先算白布长可以做多少个边长9分米的正方形。
140÷9=15(个)……5(分米) 余数5分米是多余的布料,不能做一个三角巾。
再算白布宽可以做多少个边长9分米的正方形。
10÷9=1(个)……1(分米) 余数1分米是多余的布料,不能做一个三角巾。
最后算可以做多少块三角巾。
15×2=30(块)
师总结:当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。
【设计意图:在具体情境中,发展学生的空间观念,考察学生能否创造性运用已有知识。结合画图,引导学生把计算的结果同实际的需要联系起来,培养数学的应用意识和解决问题的能力。因此否定第一种算法、】
三、巩固新知
1、判断题
(1) 两个面积相等的三角形可以拼成平行四边形行( )
(2) 等底等高的三角形面积相等( )
(3) 三角形的面积等于平行四边形面积的一半( )
(4)三角形面积的大小与它的底和高有关,与它的形状和位置无关。( )
2、一块广告牌是三角形,底是12.5米,高6.4米。如果要给广告牌刷漆(只刷一面),每平方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?
3、教材第61页练一练1题。
答案:1、×、√、×、√ 2、16千克 、 3、0.48平方米,72元
【设计意图:练习分层次设计,主要是巩固、熟练公式,解决实际问题是让学生感知生活化的数学。】
四、达标反馈
1、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?
2、明明的房间是一个长4米、宽3米的长方形。用直角边分别是4分米和3分米这样的直角三角形地砖铺地,至少需要多少块?
五、课堂小结
师:通过今天的学习,你学会了那些知识?
生:我知道:在实际问题中,三角形的底和高确定后,三角形的面积也就确定了。
生:在解决问题时,根据实际情况确定方法。如例题的第二个问题就要考虑实际问题选择方法。当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。
六、布置作业
1、教材第61页4----6题。
2、如图一个交通标志牌的面积是36平方分米,它的高是多少分米?
一、说教材
1、教材分析
“组合图形的面积”是小学数学人教版第九册第五单元的内容。教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算时,要把一个组合图形转化成已学过的平面图形再进行计算,这样既可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念并解决一些实际问题。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性。二是针对组合图形的特点强调学生学习的自主探索性。
2、学情分析
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难,所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。
二、说教学目标
基于以上的分析,我确立本节课的教学目标:
1、知识目标:在自主探索过程中,理解计算组合图形面积的多种方法;并能根据组合图形的条件有效地选择合理的计算方法解决问题;能运用所学的知识解决生活中的问题。
2、能力目标:培养运用多种策略解决实际问题的意识,渗透转化的学习思想策略。
3、情感目标、感受数学与生活的密切联系,体会组合图形的面积在实际生活中的应用价值。
三、说教学重点、难点
针对五年级学生的年龄特点和认知水平,我确定本节课的教学重难点为:认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
教学难点:引导学生观察组合图形,根据图形的特点,运用不同的方法计算出它的面积。在这个过程中,培养学生运用多种策略解决实际问题的意识。
四、说教法和学法
1、说教法
(1)多媒体教学法
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并
(2)自主探索和合作交流教学法
设计中放手让学生大胆探索,让学生在拼一拼、分一分、画一画、算一算中体验,在体验中思考,在思考中发展。老师说的很少,基本上都是由学生自己探究出来的,充分发挥了学生的主体作用。
2、说学法
(1)自主观察思考
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的。方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。
(2)小组合作学习
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
五、说教学过程
为完成本节教学目标,突出重点,突破难点,让学生充分体会到数学就在身边,感受到组合图形的趣味性,我制定了以下教学环节:
(一)创设情境、复习引入
首先,让学生欣赏一些日常生活中经常见到的图片,让学生观察比较说一说共同之处,同时说说这些图片的表面都由哪些图形组合而成的。(这里让学生说出物品表面的图形组成,为建立组合图形的概念和计算组合图形的面积打下基础。)
其次,让学生说一说生活中的组合图形。这时我让学生畅所欲言,尽情说说身边的组合图形,感受组合图形就在身边,体会组合图形的美。最后让学生拆开老师给大家的礼物盒,看看里面是什么礼物,就会使学生立刻认识到正方形、长方形、平行四边形、三角形、梯形,让学生举手发言回答,这些图形的面积公式分别是什么,谁说的对,老师就把礼物送给谁,这样做既可以充分调动学生的积极性,为本节课后面环节提供积极活跃的气氛,也可以复习这些图形名称及相应的面积公式,为确保正确的计算组合图的面积打下基础。再让学生以小组为单位利用这些图形,设计拼搭组合图形,当学生创作完成,我让他们在小组内交流,并鼓励学生上台展示,向小伙伴介绍自己拼的图案像什么?是由哪些基本图形组成的?从而明确组合图形是由几个基本图形组合而成的,引出组合图形的概念。
这一环节通过拆礼物,送礼物的游戏,让学生在说一说,拼一拼,看一看的游戏过程中充分调动多种感官参与到学习中来 ,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形有关。
(二)自主探索,合作交流
经历了拆礼物游戏之后,学生的学习兴致非常高,这时我在呈现一个这样的生活情境:最近老师家的房子正在装修,正计划粉刷墙面呢,同时多媒体出示墙面的平面图。
(1)首先让学生观察、讨论:这个图形的面积我们是否学过呢?又可以把它分解成哪些基本的平面图形呢?学生通过前面的经验,以及小组讨论交流,学生可能会出现以下两种情况:
A、是把这个组合图形分解成一个三角形和一个正方形来计算。
B、是把这个组合图形分解成两个梯形。(对于这两种情况我都及时予以肯定)
(2)接着再问学生,你们是乐于助人的好孩子吗?那你们能不能开动脑筋帮助老师算一算粉刷这面墙老师需要买多少平方米颜料吗?这样的提问形式,学生当然很愿意去动手、动脑帮老师的忙。然后以比赛的形式让学生自己独立完成:比一比,看谁的方法多,谁能更快更好的帮老师算出来,而我就在下面巡视,并帮助个别有困难的学生。
(3)当学生独立完成后鼓励学生上台展示自己的计算方法,并介绍自己的方法。同时,我在用多媒体清晰、直观地向学生展示分割的过程。让学生更好的理解计算组合图形面积的方法。在让学生自主观察比较并在小组内交流讨论上面几种方法,最后让学生自己总结出求组合图形面积的计算方法:可以把一个组合图形分解成简单基本图形,再把分解出来大的简单图形的面积加起来,掌握“分割法”在解决这一生活问题环节中,我给学生足够的时间和空间,让学生积极主动地参与到学习中,通过自主探索,小组交流,获取更多的解题方法,让他们在小组活动中都有成功的体验和经验的收获。
这一环节,以小组比赛的形式帮助老师解决生活中的问题,激励了学生探索新知的欲望,激发学生学习的积极性。同时学生通过自己动手分割,以及多媒体的直观生动的演示让学生能更好的理解组合图形面积计算方法。
(三)、综合实践,学以致用
练习是为了学生及时巩固新知,并能用学到的新知进行迁移。为此我设计了以下的下练习:
(1)为了巩固新知,又突出本课的教学难点,我紧接着装修的问题情景,设计了给地面铺地板这一练习,先让学生自主独立的解决,学生会想到用四种方法来解决问题,并观察第四种方法,让他们自己观察比较出不同?从而引导学生感受计算组合图形的面积,有时也可以用一个图形的面积减去另一个图形的面积。渗透添补法。
(2)�
(3) 最后,我鼓励学生利用今天所学的知识,解决上课开始时,自己设计的组合图形的面积,由课内延伸到课后,做到了首尾呼应,让学生把掌握的知识拓展到实际生活中去。
六、板书设计
好的板书就像一份微型教案,这节板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆理清学习的脉络。
【说教学目标】:
知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。
过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。
情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。
【说教学重、难点】
重点:整理完善知识结构,灵活运用面积公式解决问题。
难点:沟通多边形面积公式之间的内在联系。
【说教学方法】:
归纳整理,演示讲解;复习回顾。
【说教学准备】:
多媒体。
【说教学过程】
一、构建网络,新知汇总
师:同学们,咱们在第五单元里学习了平行四边形、三角形和梯形的面积及其计算,而且,还接触到了组合图形的面积,大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系,学会观察组合图形的组成。今天,我们就来复习这部分知识。(板书课题:多边形面积的复习)
师:那么我们是如何根据长方形的面积推倒出平行四边形、三角形和梯形的面积公式呢?请大家从你的头脑记忆库里提取下面的知识,看看谁的记忆库最充实?
讨论:平行四边形、三角形和梯形的面积公式是怎样推导出来的。?
师:同位同学可以商量商量。(学生汇报:教师演示)
师:大家在回忆推导公式的过程中,本着把新知转化为旧知的原则,找到了几个面积公式之间的联系。通过这样的梳理,大家对我们的面积公式是不是更加熟悉了。(边说边出示图。见板书设计)
引导学生观察,从左往右看,根据长方形的面积公式可以推导出其他图形的面积公式,从右往左看,我们在探讨一种新的图形面积时,都是把它转化成已学过的图形来计算。
二、查漏补缺,错误汇总
师:现在你们的记忆库中还有内存吗?那,就请大家想一想,你们在利用公式解决问题时有什么容易出错的地方或是需要大家注意的地方?
根据学生的回答归纳:
1.弄清图形,选择公式。
2.找对应的底和高。
3.注意单位换算。
4.三角形和梯形的面积别忘了除以
5.解决问题时,弄清面积与其他数量的关系。
6.看清组合图形是由哪几个简单图形组成的,找简单的解决方法。
7.已知面积,求底或高可以用方程解。)
师:看来同学们都特别的善于总结和观察,下面,我们就利用前面的复习来做几组练习。
三、综合练习,巩固提高
(一)按要求解答。(只列式,不计算)
1、平行四边形底是
4分米,高2.7分米,求它的面积?
2、三角形面积是
30平方米,底8分米,求它的高?
3、梯形的面积是
84平方米,高10米,上底5米,求下底?
师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。
(二)判断题:
1.三角形面积是平行四边形面积的一半。 ()
2.两个面积相等的梯形,形状是相同的。 ()
3.两个完全一样的梯形可以拼成一个平行四边形。 ()
4.两个三角形的高相等,它们的面积就相等。 ()
5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()
看来,同学们的分析和表达能力都很强,现在,我们来解决实际问题。
(三)解决问题
1.教材第113页第2题。
出示第2题,引导学生看题。
学生独立解答,并在小组中互相检查。
教师指名板演,然后集体订正。
师:通过计算这些图形面积,你想提醒大家什么?
(计算图形面积时,底和高要对应)
2.教材第116页练习二十五第9题。
(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。
(2)算一算剩下的面积是多少。
方法一:4×4-2×2÷2=14(cm2)
方法二:(2+4)×2÷2+2×4=14(cm2)
3.教材第116页练习二十五第10题。
(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?
(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:
①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。
教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。
②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。
③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。
(3)全班交流,集体订正。
四、课堂小结
多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。
说教学目标:
1.使学生理解并掌握梯形面积的计算公式。
2.能正确地应用公式进行计算。
3.通过操作,培养学生的迁移类推能力和抽象概括能力。
4.培养学生应用所学知识解决实际问题的能力,发展空间观念。
说教学重点:
理解并掌握梯形的面积计算公式。
说教学难点:
理解梯形面积计算公式的推导过程。
说教具学具准备:
1.两个完全一样的梯形纸板和剪刀。
2.20根同样的铅笔和渠道模型。
说教学步骤:
一、铺垫孕伏
1.提问:三角形面积的计算公式是怎样推导出来的?为什么要除以2?
2.指出下面梯形的上底、下底和高。
二、探究新知
1.导入:我们已经掌握了平行四边形、三角形的面积计算公式,有了这两方面的基础,我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?
2.自主探究、推导公式。
(1)你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。
(2)学生操作,互相讨论。
(3)汇报结果。提问:通过刚才的学习,你知道了什么?
引导学生明确:
①操作过程。先按住梯形右下角的顶点,再使一个梯形向与表针相反的方向旋转180度,使梯形的上下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成一个平行四边形为止。
②两个完全一样的梯形能拼成一个平行四边形。
③这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
因为:平行四边形的面积=底高
所以:梯形面积=(上底+下底)高2
同时板书。
每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上除以2?
想一想:如果是两个完全一样的直角梯形,能拼成什么图形?
学生口述,教师点拨:两个完全一样的'直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。
3.教学字母公式。
S=(a+b)h2(同时板书)
(3)要求梯形的面积必须知道哪些条件?为什么要除以2?
4.小结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?
5.应用公式计算。
三、巩固发展
1.填空:
两个完全一样的梯形可以拼成一个( )。这个平行四边形的底等于( ),高等于( )。每个三角形的面积等于拼成的平行四边形面积的( )。因为平行四边形面积等于( ),所以梯形面积等于( )。
2.判断。
(1)平行四边形面积是梯形面积的2倍。( )
(2)两个面积相等的梯形能拼成一个平行四边行。( )
四、全课小结
怎样计算梯形的面积?
梯形面积的计算公式是怎样推导出来的?
说教学目的:
1、通过复习,使学生理清各种平面图形面积计算公式之间的关系。
2、使学生能够应用面积计算公式,熟练计算平行四边形、三角形、梯形和组合图形的面积。
3、能灵活运用所学知识解决有关的实际问题。
说教学重点:
熟练计算平行四边形、三角形、梯形及组合图形的面积。
说教学准备:
平行四边形、三角形、梯形的磁片。
说教学过程:
一、创设情境,揭示课题。
1、想一想,本单元我们学习了哪些知识?
揭示课题:今天这节课我们对第五单元的知识进行整理和复习。
2、在小组内说一说,你学会了什么?
二、知识梳理,形成网络
1、复习多边形面积计算公式
(1)老师分别出示平行四边形、三角形和梯形,让学生说一说各个图形面积公式是怎样推导出来的?
老师根据学生所说,演示转化过程,形成如教材96页的板书。
(2)从整理图中能看出各种图形之间的关系吗?
学生回答后老师简要小结。
2、练一练:
老师出示下题让学生独立完成后集体核对。
选择条件分别计算下列各图形的面积。
3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?
出示第96页的第2题,让学生自己独立完成。
集体核对时让学生说一说自己的几种方法。
学生可能会想到下面几种方法。
比较哪种方法比较简便?
三、应用拓展
1、练习十九第1题。
(1)让学生审题,说一说解题步骤。
(2)独立完成。
(3)小组交流,说一说你的发现。
(4)全班交流。
师小结:几个图形都在两条平行线之间,说明它们的高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。
2、练习十九第4题。
(1)先让学生独立完成第1小题,集体核对。
(2)出示第2小题,让学生思考:能剪几棵这样的小树要考虑什么因素?能不能用纸的。面积除以树的面积?
想一想该如何摆放小树?让学生在草稿本上画一画示意图。
集体订正,展示。
四、小结:说一说今天这节课最大的收获是什么?
五、课堂作业:练习十九第2、3题。
说课后反思:
视觉冲击波
随着圣诞节的临近,美丽的对称图形——圣诞树给今天的数学课堂带来了一丝节日的气息。这美丽的图案会给数学课带来什么呢?
1、纷繁数据的视觉冲击波
教材97页第4题在仅仅只有12平方厘米的图示中共出现16个数据,可谓是场数据“盛宴”。这些纷繁的数据造成的强力视觉冲击波使学生们个个头昏眼花。虽然大家从图中清晰可辨圣诞树的面积被分成就是求三角形、两个梯形和一个长方形面积,但在实际求组合图形面积过程中他们就是被这些数据“缠绕”,无法“解脱”。全班在规定的时间内仅5人列式计算正确。
冲击波主要干扰到所有图形底的长度。无论是三角形的底,还是梯形的上下底都是学生易混易错之处。看来下次再教时,可利用不同颜色的彩笔勾画不同的图形,这样不仅能增强视觉效果,而且还能起到一定的辅助作用。
2、图案“海洋”的视觉冲击波
第4题第2小题与练习第3题要求不同。第3题只要求出“大约”结果即可,而第4题却不能简单地用手工纸的面积除以小树的面积,它需要考虑实际的排列情况。教学伊始,我是通过画简单示意图的方式带领学生通过逻辑推理来解决。大家共想到两种剪法:一种是将圣诞树竖着依次排列共可剪5棵;另一种是将圣诞树横着依次排列,每排3棵,可剪2排,所以共可以剪6棵。在此基础再想有所突破就难了。此时,我顺势出示课前按标准尺寸剪好的“圣诞树”与手工纸框架图,请学生上台边展示并验证刚才的发现。通过实际操作许多学生都从第二种剪法找到突破口,“见缝插针”地将树的棵数由6提高到了8。喜悦的心情在同学们心中传播,“还能剪出更多树吗?”的想法一直萦绕在大家的脑中。
学生中有人(魏紫瑞)指出按第3题的解法,这张纸大约可以剪出9棵这样的树。真的能行吗?《教学用书》中指明最多只能剪8棵呀!可这群孩子“明知山有虎,偏向虎山行”。不多久就有一名学生(王菁)最先“插树”成功。(如图)
通过验证8+8+2+3=21厘米,这种摆放正好充分利用了纸的宽度,摆放成功。班上立即掌声雷动,这自发的掌声不仅仅是对她结果的充分肯定,更是对她敢于挑战权威精神的赞扬。同学们的研究热情此时达到沸点,一发不可收拾。9棵可行,那么10棵还能行吗?这时,我已经是欲罢不能。多名学生上台尝试后发现如果按正规摆法会“缺胳膊少腿”,但他们尝试将树斜着放在空隙中时再次成功。这次我无法通过计算来验证是否合理了。
欣赏着图案“海洋”带来的视觉冲击,使我情不自禁地回味起同学们的精彩发现,我眼仍旧浮现出他们一张张成功后的笑脸,我深深地被这虽然色彩单调却凝聚着学生智慧的图案所折服。
说教学目标:
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.能运用所学的知识,解决生活中组合图形的实际问题。
说教学重点:
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
说教学难点:
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
说教学过程:
一、拼摆图形,引出课题
1.在拼图活动中认识组合图形
①活动要求:同学们拿出课前准备的长方形,正方形,请你用这些图形拼一个复杂的图形,并说一说像什么?
②学生开始拼图活动
③全班作品展示并汇报(张贴在黑板上,并说一说像什么?)
④提问:黑板上的图形,它们有没有共同的特点呢?
2.揭示课题
虽然拼出来的图形形状不同,但都是由几个图形拼出来的,我们也把这些图形叫做组合图形,这节课我们就来学习组合图形面积计算。
二、自主探索,学习面积计算。
出示例题的图形
1.提问:现在如果要在上面铺地板,你们知道应该买多少平方米的地板吗?
2.讨论:转化的方法(计算方法)
3.汇报交流:各种不同的想法,并说出自己的理由。
4.用你最喜欢的方法计算出这个组合图形的面积。
5.看书上的方法有没有和你发明的`方法一样的?它们又分别是转化成什么图形的?你还有别的方法吗?
三、练习
1.试一试
指导读题,理解题意。
自己独立尝试完成,全班汇报并说出你这样做的想法。
2.练一练
第1题 学生开始自由动手,分割图形
要求:
一、首先分割后的图形是已学的图形;
二、请将图形分割为最少的学过的图形;
三、可以给图形添上�
先估计中队旗的面积,再测量并计算它的面积。
一、说课内容
人教版《义务教育课程标准试验教科书·数学》五年级上册第五单元《多边形的面积》第一课时P80-81
二、我对教材的理解
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
依据以上分析和新课标的要求,确定本节课要达到的教学目标如下:
(一)知识与能力目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
(二)过程与方法目标:培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
(三)情感态度与价值观目标:培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
(四)教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用
教学难点:平行四边形面积公式的推导方法—转化与等积变形。
关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
通过平时的学情观察,我发现学生已经掌握了平行四边形的特征和长方形面积的计算方法,并且有些学生对平行四边形的面积内容并不陌生,已经有了一定的认识,但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此, 这是学生学习这一内容的重点和难点。同时,学生的认识水平存在着差异性,如何让不同层次的学生都有一定程度的发展和提高,也是教学中要考虑的重点。为突破重难点,关键要遵循小学生认识事物的一般规律,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。我打算为本节课准备的教具(学具)有多媒体课件、自制长方形框架、方格纸、课件、平行四边形纸片、剪刀、直尺等。
三、教法设想
(一)发展迁移原则
运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
(二)学生为主体,教师为主导的教学原则
针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
(三)反馈教学法
为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
四、学法渗透
自主探究与合作交流是小学数学新课程标准倡导的学生学习数学的重要方式。学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生自主探究与合作交流,通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
五、教学程序设计
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
(一)巧设情境,铺垫导入
(二)合作探索,迁移创造
(三)层层递进,拓展深化
(四)总结全课,提高认识
下面我就分别从这四个方面说一说:
(一)巧设情境,铺垫导入
新课开始,我先拿出一个长方形框架,让学生回忆长方形的面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
随后我把长方形框架拉成了平行四边形框架,并让学生比较周长是否发生变化?面积是否发生变化?通过这些问题,促使学生积极动脑猜想,平行四边形的面积和它的什么东西有关系。
为说明面积发生变化,引出数方格求面积的方法。数方格的时候注意提醒学生先数整格、后数半格,并提示数半格的方法。通过数方格,学生很容易知道拉成后的平行四边形的面积比原来长方形的面积要小了。这时我启发学生平行四边形的面积计算和长方形是不一样的,不可能等于相邻两条边的乘积了。那么拉成后的平行四边形的面积为什么会变小呢?平行四边形的面积究竟和什么有关呢?从而引出本节课的课题:平行四边形的面积计算(板书)
(二)合作探索,迁移创造
1、图形转换
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
由于前面在数格子时已经有同学提到用割补的方法来求面积,所以我顺水推舟,让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,我引导学生有序按照三个步骤——怎么画、怎么剪、怎么拼来说。同时,我及时抛给学生这样一个问题:“拼成的。长方形面积变了没有?”引发学生积极开动脑筋思考。之后,请学生展示不同方法。
2、探讨联系
汇报后,我总结了预设的两种基本方法,并用媒体展示了过程,使学生更清楚地了解等积转化的过程。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底。接着我让学生根据填空同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
3、推导公式
将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,公式用字母表示S=ah,并让学生齐读和书空。
4、验证公式
刚才用数方格的方法算出了平行四边形的面积,现在让学生用公式计算并验证。同时,我及时让学生反馈用公式计算要知道什么信息。并让学生比较数方格和公式计算哪种方便。培养学生用心学习观察的情感。
5、教学例1
例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。
新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:转化图形——建立联系——推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。
(三)层层递进,拓展深化
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
第一层:变式练习
有利于学生加深对公式的理解,举一反三,知道求高和求底的公式。
第二层:强化练习
强化公式中对高的理解,知道高是底边上对应的高。
第三层:综合练习
你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
第四层:拓展练习
猜一猜:如果让你设计一个平行四边形的黑板报栏目,要求面积是24平方分米,那么底和高各是多少?(底和高都是整数)
发散学生思维,在一定程度上对学生进行几何美的教育。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
(四)总结全课,提高认识
小结:这节课你有什么收获?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
总之,以上教学程序的设计遵循学生的认知规律,我大胆放手让学生探究、交流,让学生感觉到数学的生动好玩,学生在一次次引导中操作、思考、解决问题,其外部活动逐渐转化为自身内部的智力活动,从而使学生获取了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
说教学目标:
1.使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用。
3.培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
说教具、学具准备:
用厚纸做完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。
说教学过程:
一、复习
计算平行四边形的面积。
教师:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算。
板书:三角形面积的计算
二、新课
1.用数方格的方法计算三角形的面积。
教师:前面我们在学习长方形面积和平行四边形面积时,都曾经用过数方格的方法,下面我们再用数方格的方法来求三角形的面积。
2.通过操作总结三角形面积的计算公式。
让学生拿出两个完全一样的锐角三角形,提问:
用两个完全一样的锐角三角形能不能拼成一个平行四边形?让每个学生都动手拼一拼,或者同桌的两个学生一同拼摆。
教师边说边演示拼的过程。先将两个锐角三角形重合放置,再按住三角形的右边顶点,使三角形时针运动相反的方向转动180,到两个三角形的'底边成一条直线为止,再把右边三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止,并把拼成的平行四边形图画在黑板上。然后再带着学生规范地照上面的步骤做一遍,做时仍需边做边强调:先要把两个锐角三角形重合,再旋转,旋转时哪个点不动?旋转了多少度?平移时是沿着哪条直线移动的?学生学会把两个完全一样的锐角三角形拼成一个平行四边形后,教师再说明:平移是图上各点沿直线移动,旋转是一个点不动,其它的点都围绕着不动点转。提问:
每个锐角三角形的面积和拼出的平行四边形的面积有什么关系?
学生回答后,教师强调:每个锐角三角形是拼成的平行四边形面积的一半。
三、小结。
教师结合黑板上分别由两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两个完全一样的三角形,不论是直角三角形,锐角三角形,还是钝角三角形,都可以拼成一个平行四边形。提问:
这个平行四边形的底和三角形的底有什么关系?
这个平行四边形的高和三角形的高有什么关系?
这个平行四边形的面积和其中一个三角形的面积有什么关系?
平行四边形的面积怎样求?一个三角形的面积是这个平行四边形面积的一半,那么这个三角形的面积应该怎样求呢?
学生回答后,教师板书:
三角形的面积=底高2
为什么要除以2呢?学生回答后,教师指出:因为平行四边形的面积是底乘高,而三角形的面积是这个平行四边形面积的一半,所以三角形的面积是底乘高再除以2。
教学用字母表示三角形的面积公式。
教师:通常我们用字母a表示三角形的底,用字母h表示三角形的高,用字母S表示三角形的面积。
提问:
用字母怎样表示三角形的面积公式?学生回答后
说教学目标:
1.使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
2.通过练习,巩固同学们学习的知识。
3. 培养学生运用数学知识解决生活中问题的能力。
说教学重点:
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
说教学难点:
培养学生运用数学知识解决生活中问题的能力。
说教学过程:
一、复习梯形面积的计算公式。
二、基本练习:
1.求下面梯形的面积:
上底2米 下底3米 高5米
上底4分米 下底5分米 高2分米
2.填空:
两个完全一样的梯形可以拼成一个( )形,这个拼成的图形的底等于梯形的( )与( )的'和,高等于梯形的( ),每个梯形的面积等于拼成的平行四边形面积的( )。
3.梯形的上底是a,下底是b,高是c,则它的面积 =( )
4.一个梯形上底与下底的和是15米,高是4米,面积是( )平方米。
5.一个梯形的面积是8平方厘米,如果它的上底、下底和高各扩大2倍,它的面积是( )平方厘米。
6.判断:
1)梯形的面积等于平行四边形的面积的一半。 ( )
2)两个完全相同的直角梯形,可以拼成一个长方形。 ( )
3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米。 ( )
三、提高练习:
两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的平行四边形的面积是多少平方分米?
四、小结:
本节课我们主要学习了哪些内容?
说教学目标:
1、使学生理解三角形面积公式的推导过程,并能正确的计算三角形的面积。
2、培养学生分析、推理的能力和实际操作的能力。
3、通过三角形面积计算公式的推导,引导学生运用转化的思考方法探索规律,培养学生思维的灵活性,发展学生的空间观念。
4、培养学生学习数学的情感和兴趣,懂得运用数学知识解决生活中的问题。
说教学重点:
用转化的方法探索三角形的面积公式,能正确计算三角形的面积。
说教学难点:
理解三角形面积公式的推导过程和公式的含义,根据计算公式灵活解决实际问题。教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
说教具准备:
红领巾、信封若干(内有三角形)、实验报告表
说教学过程:
一、情境导入,揭示课题。
师:在我们美丽的校园里,有块平行四边形的空地,它的面积怎样计算的?(小黑板出示校园图)师:你还记得平行四边形面积的计算方法怎样推导的吗?(生:是通过把平行四边形转化成长方形推导出来的;老师根据学生回答板书:转化)师:现在园丁叔叔要把它沿着对角线斜着平分成2块,一块种菊花,一块种牵牛花,请看,每块花地是什么形的?(出示分法:分出2个三角形)师:每块花地的面积是多少,该如何计算?大家想知道吗?(生:想)好,咱们就一起来研究三角形的面积计算方法。(老师出示课题:三角形的面积)
二、操作“转化”,推导公式。
1、寻找思路:师:我们能不能也学学推导平行四边形面积的方法,把三角形也转化成已学过的图形来推导呢?
师:想一想,将三角形转化成学过的什么图形?
2、操作探索:
(1)提出操作和探究要求。
师:请小组合作拿出准备好的学具袋(装着三角形的信封袋),在里面选择�
(2)学生以小组为单位进行操作和讨论。
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生。
(3)展示学生的剪拼过程,交流汇报。
师:哪个小组想来展示、汇报你们的成果?
让小组组长汇报。(学生一边拿三角形在黑板演示,一边根据所填的表格说,演示完毕把作品贴在黑板上。)
每一组汇报完演示:用旋转平移的方法将三角形转化成各种已学过的图形。(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
根据学生的回答和演示得出:两个完全一样的三角形能拼成一个平行四边形,三角形的底和高分别与平行四边形的底和高相等,三角形的面积是平行四边形面积的一半。
3.归纳公式:师:你能根据我们的结论推导出三角形的面积计算方法吗?请把你的推导填在书上84页的这里。学生填完后,评定。
师:说说你推导的理由是什么?(如学生不能把关键问题回答出来,应适当给予引导)
让三、四位同学分别大胆地推导说理,接着让同学们评价自己的猜测和证明。老师根据学生的汇报,小结三角形面积公式的推导过程,并完成板书:
因为:两个完全一样的三角形可以拼成一个平行四边形,平行四边形的'面积=底×高。所以:一个三角形的面积=底×高÷ 2
师:如果用S表示三角形的面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书:S=ah÷2
4、尝试计算:师:现在你会解决园丁叔叔的问题吗?
学生列式计算,反馈、点评。
三、解决问题,体现数学价值。 1.解决问题,学习例2。出示85页例2:学生独立完成,集体订正。
师:� 请同学们课后把85页的“你知道吗”读一读。
3.实践运用,P86第4题:要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?学生独立完成,然后汇报、评讲。
四、联系生活,综合运用,适当拓展。
1、做一做练习。
2、判断:
①两个三角形一定能拼成一个平行四边形。()
②三角形的底和高都是5分米,它的面积是25平方分米。()
③求三角形的高可以h=s×2÷a()
五、总观全课,体验提高。
师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)
引导学生根据板书,回顾这节课学习内容和探究思路。
师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的图形推导出了三角形面积的计算公式,你还想研究其他的推导方法吗?请回家想想,下节课告诉老师。
说教学目标:
1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3、培养学生学习数学的兴趣及积极参与、团结协作的精神。
说教学重点:
探究平行四边形的面积计算公式,会计算平行四边形的面积。
说教学难点:
平行四边形面积公式的推导过程。
说教具准备:
方格纸、剪刀、长方形、平行四边形。
说教学过程:
一、情景引入,激趣导课
1、情景引入(出示) 师:同学们,在以前的学习中我们已经认识了很多图形,请看大屏幕。你发现了哪些图形?你能计算哪些图形的面积? 生:长方形、正方形、平行四边形、三角形、梯形。 相机板书:长方形的面积=长×宽 正方形的面积 =边长×边长
2、从平行四边形的花坛中引出“平行四边形的面积”。
师:这两个花坛哪一个大?(生自由说)。 提出问题:你确定哪一个面积大吗? 我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢? (生可能猜想:平行四边形的面积=底×高 ,试问:你是怎么知道的?今天我们这节课主要来研究平行四边形的面积)
3、揭题:平行四边形的面积(板书课题)
二、动手操作,探究新知
1、联想、猜测。(用数格子的方法) 长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?
生 1:底和高,底乘高等于平行四边形的。面积。
生 2:相邻两边的积等于平行四边形的面积。
2、归纳意见,提出验证。(用剪、拼的方法) 能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。
⑴小组合作,动手操作。
⑵演示操作过程。(演示) 同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。
〔评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。〕
三、反馈练习,发展思维。
四、课堂总结
今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?
一、说教学内容:
北师大版教科书五年级上册第四单元《多边形的面积》。
二、说教学目标:
1.进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算图形的面积,并解决一些简单的实际问题。
2.回顾梳理本单元知识,能用思维导图清晰的整理单元知识网络,并熟练运用本单元知识解决实际问题。
3.经历单元复习过程,熟练掌握单元知识的同时,再次感受合作学习的重要性以及转化思想在数学学习中的重要性,培养良好的数学学习兴趣。
三、说教学重点、难点:
重点:理解本单元所学的面积公式,理解计算公式之间的联系,形成知识网络。
难点:灵活运用平行四边形、三角形、梯形的面积公式解决问题。
四、说配套资源:
《多边形的面积》ppt课件
《多边形的面积》单元小测、《多边形的面积》专项突破
五、说学习设计
(一)课前设计
课前,教师发给学生如下复习资料,学生独立完成:
(二)课堂设计
1.谈话引入,揭示课题
师:我们在这个单元学习了哪些内容?
学生自由回答,教师引导有序回忆概念。
师:今天这节课我们就对“多边形的面积”进行整理和复习。
【设计意图:以一组简单并且特征明显的数为线索,让学生重现已有的概念,不仅能抓住要领,而且能提高复习的效率,为接下来建构知识网络做好准备。】
2.知识梳理,整体回顾
(1)比较图形的面积。
师:下面哪些图形的面积与图①一样大?为什么?
师:同学们说的。很清晰。我们利用这样的分割、移补后,图形的面积是没有改变的。这就是数学上的“出入相补”原理。
出示课件:
(2)认识底和高
师:屏幕上的这些图形都不陌生,你能按要求画出它们的高吗?
师:用三角尺画图形的高,需要先确定什么?(确定图形中的某个顶点或图形边上的某个点)
师:接着该怎样画呢?(接着,思考如何用三角尺画出底上的垂直线段,其中一条直角边过图形中确定好的某个点,另一条直角边和图形的底重合。最后画出图形的高)
注意:画高时要用虚线,关注底和高的对应关系。
出示课件:
(3)多边形的面积
师:我们在之前的学习中已经会计算平行四边形、三角形、梯形的面积。你还记得我们是如何推导出这些公式的嘛?它们之间存在着什么样的联系呢?
小组交流,教师概括学生的回答,学生交流会后用课件动态依次出示:
小结:把平行四边形转化成了长方形,推导出了平行四边形的面积计算公式;
把三角形和梯形转化成了平行四边形,推导出了它们的面积计算公式。
3.完善思维导图
(1)引导整理,汇报交流
师:现在请小组集体整理/调整思维导图(知识网络)。
师:哪一组愿意来介绍下整理/调整后的的情况?
请2~3个小组的同学上台展示汇报知识整理图,说明这样整理的理由,其他小组的同学进行质疑,提出改进意见。
师:通过刚才的交流,同学们对本单元的知识有了进一步的认识,下面请各小组的同学看看你们小组整理的知识图有没有需要改进的地方,请通过改进,使你们组的知识图也更加完善。
各小组对本组的知识图进行反思和修改。
师:现在哪个小组的同学愿意来展示一下经过修改之后的知识整理图?
学生二次交流,全班评价,在共同讨论的基础上逐步完善,大致形成下面知识思维导图。
【设计意图:让学生在共同交流的基础上进行改进,能够起到自我反思、自我修正的作用,使学生对知识的理解进一步加深,认识进一步升华。】
4.典型题目练习,综合应用知识
(1)计算下列图形的面积。
【知识点】平行四边形、梯形、三角形的面积计算。
【答案】平行四边形的面积:24×15=360(cm)
梯形的面积:(14+26)×22÷2=440(cm)
三角形的面积:42×7÷2=147(dm)
【解析】代入相应的面积公式,求出相应的面积。
(2)一面用纸做成的直角三角形小旗,两条直角边分别长12厘米和20厘米。做10面这样的小旗,至少需要用纸多少平方厘米?
【知识点】灵活运用三角形的面积公式解决问题。
【答案】12×20÷2×10=1200(cm)
答:至少需要用纸1200平方厘米。
【解析】三角形的面积公式=底×高÷2,题目中已说明是直角三角形,并说明两条直角边分别是12厘米、20厘米。则根据公式可求出1个直角三角形的面积,题目中要求要做10面这样的小旗。因此再用1个直角三角形的面积×10即可解决问题。
(3)做《多边形的面积》单元小测、《多边形的面积》专项突破。
5.全课小结
师:通过对本单元的整理与复习,你有哪些新的收获?