怎样提高孩子的数学逻辑思维

  数学学习中很注重思维方式,培养这些思维方法,有利于快速准确地解决数学问题,提升学习兴趣和自信心,以及抓问题本质的能力,同时,也可以帮助他们应对每次的数学考试。小编整理了培养学生数学思维能力的方法,希望能帮助到您。

  提高数学思维的八种方法

  1

  转化方法

  转化,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。

  2

  逻辑方法

  逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

  3

  逆向方法

  逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

  4

  对应方法

  对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。

  5

  创新方法

  创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。

  6

  系统方法

  系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。

  7

  类比方法

  类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。

  8

  形象方法

  形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式也是其一种基本方法。

  数与式易错知识点

  易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

  易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

  易错点3:平方根、算术平方根、立方根的区别。填空题必考。

  易错点4:求分式值为零时学生易忽略分母不能为零。

  易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

  易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

  易错点7:计算第一题必考。五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。

  易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

  易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

一键复制全文保存为WORD
相关文章