数学压轴题的做题思路

  中高考的设立是为了高一级学校选拔优秀人才提供依据,其中中高考压轴题更是为了考查学生综合运用知识的能力而设计的题型,具有知识点多、覆盖面广、条件隐蔽、关系复杂、思路难觅、解法灵活等特点。小编整理了相关资料,希望能帮助到您。

  数学压轴题的做题思路

  九种题型

  1线段、角的计算与证明问题

  中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。 对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

  2图形位置关系

  中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

  3 动态几何

  从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

  4一元二次方程与二次函数

  在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合

  5多种函数交叉综合问题

  初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。

  6列方程(组)解应用题

  在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

  7动态几何与函数问题

  整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。

  8几何图形的归纳、猜想问题

  中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。

  9阅读理解问题

  如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键。

  解题策略

  1.学会运用数形结合思想。

  数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合 思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

  纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

  2.学会运用函数与方程思想。

  从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

  用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

  直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

  3.学会运用分类讨论的思想。

  分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

  在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

  分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏

  4.学会运用等价转换思想。

  转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

  任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

  中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

  5.要学会抢得分点。

  一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

  中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,最大限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。

  解中考数学压轴题,一要树立必胜的信心;二要具备扎实的基础知识和熟练的基本技能;三要掌握常用的解题策略。

  高中数学到底学什么?

  1.内容多,进度快:高一和高二学5本必修,3-4本选修,每学期2-3本的进度,然后到高二下半学期开始一轮复习,直到高考结束。初中一学期学1本,数据对比明显悬殊,每一个学科基本上都会翻倍。

  2.内容难,抽象,知识点的密度大,比如三角函数一章的公式都能达到50个左右,知识点隐秘且联系大。

  3.还有一个最大的特点是坑,高中数学一个符号就会让知识点大相径庭,学生稍不注意就会出错。

  4.高中学的知识难,速度快,并不是每一个人都可以适应高中,并不是每一个同学到高中都跟得上。

  5.并且课堂大满贯。如果大家没休息好,错过一节课可能就再也听不懂了。

  根据问题找到最合适的方法

  主要根据期中考试的成绩分成几类,说明共性问题。期中考试成绩分为四档:60分以下,60-90分,90-120分,120分以上。

  1.期中成绩在120分以上的学生,学习类型属于轻松型和主动型,平时学习巩固好基础知识,在学习中注意易错点,多积累。

  这部分学生已经掌握了数学的学习窍门,可以平时做些拔高题目,提升解决综合问题的能力。

  如果想通过竞赛走自招的话,建议从高一就开始准备。自主招生需要一些竞赛和荣誉,所以建议找一些专门的老师去学习竞赛知识。

  2.期中考试在90-120分的学生,学习方法是没有问题的,学习主动性也是有的。但是应该警惕变成随遇而安型,满足型,千万不要松懈下来。但是分数在这一档的原因可能是:

  (1)计算能力差,会做的题目做不对,经常审错题目,对知识点和规律在做题时稍一马虎就全盘皆输。所以这样的同学要记住,全做了不一定比做一个对一个的分数高。平时做题注意正负号,注意括号乘法,不要想当然,千万不要口算心算。

  (2)做题速度慢,导致后边会做的问题没有做,像这种平时要注意限时训练,在规定的时间内完成规定的量,然后通过大量练习+定期总结去提升做题速度。

  (3)眼高手低型,就是觉得题目一看都会,但是一做题目就会出现做错、做不全对的情况,出现这种问题的同学一般是初中学的比较好,或者有点自信过了头。要解决的话需要明白高中数学做题要一心一意,不能有杂念。平时不能觉得会就不做了,会做不代表能做对,会做不一定能写出来。所以需要踏踏实实的去学习数学的基础知识,去做题目,一定要把练习落实在笔头上。

  3.成绩在60-90分的学生,一般是学习方法是有问题的,如果得不到及时纠正的话,容易变得信心、毅力不足。

  这一分数段的同学一旦开始努力,只要方法对了,其实成绩还是很好提升的,当然也可以根据特点去选择一对一补课,或者专门的补习班。

  4.期中成绩在60分以下的学生,基本上没有适应高中数学的学习,上课听不懂,题也不太会做。

  这个分数段的同学,经常出现遇到不会的问题不去问的情况。数学最怕这样,问题攒多了,就不知道该如何问,不知道如何下手,有的同学住校,不敢问老师,也不敢问同学。

  疑问越来越多,到后来都听不懂,这是恶性循环,所以这个是肯定要改正的。

  所以这部分同学,数学的学习方法还没有掌握,并且没有在中考后的暑假及时掌握高中的数学特点,没有适应高中数学,更需要外部老师的帮助的,比如辅导班,一对一等。

  高中的学习方法梳理

  1.记知识点、思路方法。记下老师讲的课堂知识点,题目的解法和推导思路,千万不要满堂抄笔记,上课以听为主,实在不行,借学霸的笔记就可以了。

  2.记典型例题。将课堂上典型例题及时记下来,便于课后整理解答过程,有一个再学习的过程。但是一定不要闭门造车,一定要多接触同学和老师,多听多看 ,这一点是有帮助的。

  3.记错误反思。学习中不可避免的犯这样或那样的错误,“聪明人不犯或少犯同样的错误”,记下自己所犯的错误,并用红笔加以标注,以警示自己避免再犯类似的错误,在反思中提高。

  高中数学不是神,遥不可及;高中数学不是铜墙铁壁,坚不可摧;高中数学不是深渊,遥不见底。

  他只是一门学科,只是一门考试科目,只是一个需要套路的艺术。

  所以内心不用害怕,不用担忧,只要方法对,套路总结的好,学渣到学霸只是一个坎而已。


数学压轴题的做题思路相关文章

1.中考数学压轴题的答题思路

2.中考数学的压轴题解题方法

3.做中高考数学压轴题的技巧

4.高考数学题型分值分析

5.2019中考数学复习方法要点攻略

一键复制全文保存为WORD
相关文章