在长沙小升初的备考过程中,数学科目需要记忆的知识虽然不多,但往往差之毫厘失之千里。所以在备考数学的过程中,大家一定要把基础知识和公式准确的记忆下来。以下是人见人爱的小编分享的小学数学《倒数的认识》教案优秀6篇,如果对您有一些参考与帮助,请分享给最好的朋友。
教学内容:
教科书第50页例7及相应的练习
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、培养学生举例、观察、比较、抽象概括能力。
3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入
分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1 );
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)
二、教学新课
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1.
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的倒数
1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7
2、师: 同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究
a 四人为一小组,选择一种情况研究
b 生交流汇报,师板书例子
c 引导概括求倒数的方法
3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1.)(板书)
4、归纳如何求一个数的倒数
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
四、深化认识
1、多媒体出示P51第4题
先找出下面每组数的倒数,再看看你能发现什么。
2、 交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?。
(……这组分数都是真分数,它们的倒数都是假分数。)
师:是不是所有真分数的倒数都是假分数?
(出示:所有真分数的倒数都是假分数)
师:谁来说说第二组
(……这组分数都是假分数,它们的倒数都是真分数。)
师:是不是说所有假分数的倒数都是真分数?
(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)
所以——(出示:大于1的假分数的倒数都是真分数。)
师:第3组呢?
(…… 这组分数的倒数都是整数。)
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)
(出示:分数单位的倒数都是整数)
师:第四组呢?
(…… 这组都是整数,整数的倒数都是分子为1的真分数。)
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的倒数都是分数单位)
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
3、现在,你认识倒数了吗?真的认识了?那就请你来辨一辨。(课件显示)
(1)、得数是1的两个数互为倒数。 ( )
(2)、9的倒数是9/1。 ( )
(3)、1的倒数是1,0的倒数是0。 ( )
(4)、1/6是倒数。 ( )
(5)、因为x×y=1(x≠0,y≠0),所以x和y互为倒数。( )
(6)、所有假分数的倒数都是真分数。( )
4.填空。
3/4 × ( )=1 7 × ( )=1
2/5 × ( )=( )× 4 = 6/7 ×( )=0.2 ×()=1
五、全课小结
通过这节课的学习,你有什么收获?你还有什么疑问?
活动目标
1、引导幼儿学会1——10的倒数。
2、在游戏的过程中,感知顺数和倒数的规律。
3、使幼儿在游戏中能积极主动的学习,并感受集体活动的乐趣。
4、培养幼儿的观察力、判断力及动手操作能力。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
重点难点
理解1——10之间顺数与倒数的规律
活动准备
1、1——10数字卡片两套,方向箭头两个
2、磁铁圆点若干,小动物玩具十个
3、小汽车两辆(颜色不同)
4、音乐:《郊游》
活动过程
一、开始部分
教师以谈话的方式导入,请小朋友们去郊游为主题,吸引幼儿的注意力和想积极参与活动的兴趣。
二、基本部分
(一)引导幼儿以报数的方法,初步感知顺数的规律,按从小到大的顺序排列的,后一个数比前一个数多1,这样排列的一排数叫顺数。
(二)接着导入到倒数的认识
教师引导幼儿感知,由于方位的变化,数顺序也会发生变化,从大数到小数排列,后一个数比前一个数少1,那么这样排列的一排数就叫做倒数了。
(三)巩固部分
1、教师以惊讶的神情导入这些小动物有的胸前有数字,但个别是没有的,请小朋友们帮它们按规律排好队。
2、请小朋友们与小动物玩游戏,以游戏的方式,引导幼儿可以从任意数起的顺数和倒练习。
3、教师以郊游的方法导入小汽车,引导幼儿根据对汽车不同的颜色进行观察,并且感知由于方位的变化,数的顺序也会发生变化,指导幼儿参与体验,巩固感知顺数和倒数。
4、指导幼儿参与手指游戏,再次进行对顺数与倒数的练习。
三、结束部分
引导幼儿回忆生活中哪里有顺数和倒数,以丰富幼儿的生活经验。
四、活动延伸
请幼儿回家与小伙伴或爸爸、妈妈共同寻找顺数和倒数,下一节让我们大家共同分享。
活动结束后,有的小朋友自觉排队,请一人当小队长,按顺序数数,有的以开火车的形式进行数数,由这些可以说明孩子们已经有了探究的兴趣,那么我们教师应放开手,让孩子们自己去玩、去探索,毕竟学习不能只通过一两集体活动来完成。
活动目标:
1、引导幼儿学会1――10的倒数。
2、在游戏的过程中,感知顺数和倒数的规律。
3、使幼儿在游戏中能积极主动的学习,并感受集体活动的乐趣。
4、培养幼儿的观察力、判断力及动手操作能力。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
重点难点:
理解1――10之间顺数与倒数的规律
活动准备:
1、1――10数字卡片两套,方向箭头两个
2、磁铁圆点若干,小动物玩具十个
3、小汽车两辆(颜色不同)
4、音乐:《郊游》
活动过程:
一、开始部分
教师以谈话的方式导入,请小朋友们去郊游为主题,吸引幼儿的注意力和想积极参与活动的兴趣。
二、基本部分
(一)引导幼儿以报数的方法,初步感知顺数的规律,按从小到大的顺序排列的,后一个数比前一个数多1,这样排列的一排数叫顺数。
(二)接着导入到倒数的认识
教师引导幼儿感知,由于方位的变化,数顺序也会发生变化,从大数到小数排列,后一个数比前一个数少1,那么这样排列的一排数就叫做倒数了。
(三)巩固部分
1、教师以惊讶的神情导入这些小动物有的胸前有数字,但个别是没有的,请小朋友们帮它们按规律排好队。
2、请小朋友们与小动物玩游戏,以游戏的方式,引导幼儿可以从任意数起的`顺数和倒练习。
3、教师以郊游的方法导入小汽车,引导幼儿根据对汽车不同的颜色进行观察,并且感知由于方位的变化,数的顺序也会发生变化,指导幼儿参与体验,巩固感知顺数和倒数。
4、指导幼儿参与手指游戏,再次进行对顺数与倒数的练习。
三、结束部分
引导幼儿回忆生活中哪里有顺数和倒数,以丰富幼儿的生活经验。
四、活动延伸:
请幼儿回家与小伙伴或爸爸、妈妈共同寻找顺数和倒数,下一节让我们大家共同分享。
教学反思:
活动结束后,有的小朋友自觉排队,请一人当小队长,按顺序数数,有的以开火车的形式进行数数,由这些可以说明孩子们已经有了探究的兴趣,那么我们教师应放开手,让孩子们自己去玩、去探索,毕竟学习不能只通过一两集体活动来完成。
本节课我认为有三点:
1、创设宽松、民主、和谐的课堂氛围。课前交流,通过碰到好朋友,美国人与中国人不同的表示方式,一句谁愿意跟老师握手?一下子把全班同学的热情给调动起来。随后,我接着说道:我和大家在相处中,我们相互成为了好朋友,你是怎样理解相互成为好朋友这句话的?通过此种形式让学生从感性上理解互为的含义,为后面学习倒数的意义作了铺垫,同时也为宽松的课堂氛围打下一个良好的基础。
2、创造一切机会,让学生自主探索。在进行倒数意义探索时,我说出两个互相颠倒的分数,让学生模仿老师在旧知的基础上也同样说出这样的两个分数,然后我的一句你们发现了什么?学生观察比较,进而发现规律,从直观上初步认识了倒数,并给倒数下了定义。接着,我出示()()=1,让学生写出乘积是1的两个数,尽管倒数的意义刚刚讲过,学生要想写出这样的两个数,还是要动一番脑子的。接着,我问到:你们是怎样这么快就找到了乘积是1的两个数?从而在学生的回答中,捕捉有利于下一环节---倒数方法的生成的信息。你是怎样想出这些数的倒数呢?能把方法介绍给大家吗?求倒数的方法很简单,关键在于让学生亲历学习过程,悟出求倒数的方法。
3、提倡小组合作,在讨论中,老师真正以一个组织者、引导者的身份出现,实现互动对话式教学。在求倒数方法之后,我出示了小组讨论题:怎样求一个整数的倒数?1的倒数是几?哪些数可能没有倒数?由此学生展开激烈的讨论交流,整数的倒数就用1除以整数,1的倒数是1,0没有倒数。1的倒数为什么是1?0为什么没有倒数?0没有倒数是因为10=00作除数无意义。因此,0没有倒数。
教学内容倒数的认识
教学目标
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点
教学重点:理解倒数的意义,学会求倒数的方法。
教学难点:发现倒数的一些特征。
教具准备课件
设计意图
教学过程
特色设计
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏 土———干吞———吴
按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢? 能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2 两个分数的倒数。
学生试做讨论后,教师将过程 。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1-5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识? 板书设计
教材分析
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学情分析
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
教学目标
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点和难点
理解倒数的意义,会求一个数的倒数。
教学过程
略
教学反思
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的'倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。