作为一位杰出的教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!下面是的小编为您带来的五年级数学上册教案优秀5篇,希望能够给予您一些参考与帮助。
教学目标:
1、让学生在实际情境中,认识计算梯形面积的必要性。
2、在自主探索活动中,让学生经历推导梯形面积公式的过程。
3、能运用梯形面积的计算公式,解决相应的实际问题。
教学重难点:
理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。
教学准备:
梯形纸片、多媒体课件、剪刀。
教学过程:
一、复习引入回顾平行四边形、三角新的面积公式,想一想:三角型面积的公式是怎么推导出来的
二、探究新知
实际操作,自主探究。
电脑演示地24页的情境图,启发学生思考:如何把体型转化成我们已经学过的图形呢?
1、独立操作,自主探索。
学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。
2、小组讨论。
四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。
3、交流汇报,发现规律。
(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。
(2)联系三角形的面积公式,分析理解:为什么梯形和三角形的面积计算公式都要除以2?
(3)经观察分析后,引导学生得出结论,并用字母公式来表示。
三、看书质疑,交流感想
阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。
完成课前提出的问题
四、巩固应用,拓展提高
完成25页习题
五、全课总结与反思
通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高。
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作 验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘 相同的数 ,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师: 这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板 正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
教学内容:
数学第九册教材P27页例7和例8
教学要求:
认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
教学重点:
循环小数的特点
教学难点:
理解循环小数的意义
教学过程:
一、导入并板书课题:循环小数
二、出示学习目标
认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
三、呈现自学指导(1):
1、认真看课本27页,观察400÷75的竖式计算,说说你的发现。
2、思考:这个竖式如果继续除下去,会是怎样的情况。你怎样表示出它们的商?
五分钟后,比一比看谁能做出类似的。题目,并能说出自己的发现。
四、学生自学
1、学生看书,教师巡视,注意帮助学困生。
2、统计了解学生自学情况。
3、学情检测
(1)出示检测题:
计算后观察商的特点:
28÷18=
78.6÷11=
5.7÷9=
20÷3.7=
(2)请四名同学板演,其他同学自己做,做好后与板演的同学对比,找出不同。
五、后教
1、更正板演题
评思路、评方法、评步骤、评结果、评规范
2、讨论
(1)循环小数的特点:
(2)循环小数的意义:
六、出示自学指导(2):
认真看课本28页的“你知道吗?”
思考:
1、循环小数中,依次不断重复出现的数字叫什么?
2、数字上面的小圆点叫什么?
3、像5.3…可以简写成多少?
4、7.14545…也可以简写成多少?
五分钟后,看谁说得准确,写得漂亮。
七、学生自学
1、学生看书,教师督促学生专心看书。
2、了解学习情况。
八、评价板演题
看写得是否准确规范,学生评,师生评。
九、小结本节课内容,学生质疑
单元教学目标
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学内容
小数乘以整数 课型 新授课
教学目标
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点
小数乘以整数的算理及计算方法。
教学难点
确定小数乘以整数的积的小数点位置的方法。
教具准备
放大的复习题表格一张(投影)。
教学过程
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角
3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍。)
(4)初步理解算理。怎样算的? 把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.7 2
× 5
3、 6 0
(2)强调依照整数乘法用竖式计算。
(3) 示范:0. 7 2 扩大100倍 7 2
× 5 × 5
3、 6 0 3 6 0
缩小到它的1/100
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
① 先把小数扩大成整数;
② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
解决问题(1)第 课时 课型 新授
学习目标 知识与技能:经历运用不同的估算方法来解决超市购物问题的过程,体会用估算解决购物问题的简便性
过程与方法:学会解决乘加、乘减实际问题的方法,掌握乘加、乘减的运算顺序,并能准确地进行计算。
情感态度与价值观:在解决有关小数的实际问题的过程中,体会小数乘法的应用价值。
教学重点:会用估算解决实际问题,掌握乘加、乘减的运算顺序。
教学难点:准确计算乘加、乘减
教具运用:课件
教学过程
一、 情境导入
1、 出示例8主题图
妈妈带100元去超市购物。妈妈买了2袋大米,每袋30.6元。还买了0.8㎏肉,每千克26.5元。剩下的钱还够买一盒10元的鸡蛋吗?够买一盒20元的吗?
2、 引导学生读题,列表整理题中的数学信息
单价 数量 总价
大米 30.6 2
肉 26.5 0.8
鸡蛋 10 1
20 1
3、 理解题意,明确解题思路
妈妈买了2袋大米和一块肉,还想买一盒鸡蛋。想要知道钱数够不够 ,只要把买到的所有商品的价格加在一起,与100进行比较就能知道结果,这样的题用估算的方法比较简便。
二、分析与解答
1、自主尝试解答
学习要求
(1) 请大家独立解答这个问题,在解答完之后想想还有其他的方法。
(2) 想一想怎样才能把自己的解题方法给同学们讲清楚。
学生独立完成
2、 交流分析
列举学生的解法,学生可能出现。
? 30.6×2=61.2(元)26.5×0.8=21.2(元) 61.2+21.2=82.4(元)
100-82.4=17.6(元)因为10<17.6<20,所以够买一盒10无的鸡蛋,不够买一盒20元的鸡蛋。
? 1袋米不到31元,2袋一不到62元,肉不到27元,再买一盒10元的鸡蛋,总共不超过62+27+10=99(元),所以够买一盒10元的鸡蛋,不够买一盒20元的鸡蛋。
师:第一种方法大家读懂了吗?
生解释想法。
师:第二种方法呢?
学生阅读,并进行解读交流。
小结:用“上舍入”的方法求得的和一定大于实际数。用“下舍入”的方法求得的和一定小于实际数。
师:比较一下,你更喜欢哪种方法?
学生汇报:我喜欢估算这种方法,因为它使计算更加的简单。
3、用计算器验证估算结果的正误
2袋大米的价钱 + 0.8kg肉的价钱 + 一盒鸡蛋的价钱
30.6×2=61.2(元) 26.5×0.8=21.2(元)10元或20元
三种商品的总价:
(1)买10元的鸡蛋:61.2+21.2+10=92.4(元)
(2)买20元的鸡蛋:61.2+21.2+20=102.4(元)
因为
? 92.4<100,剩下的钱还够买一盒10元的鸡蛋。
? 102.4>100,剩下的钱不够买一盒20元的鸡蛋。
所以估算的结果是正确的。
三、回顾反思
师:回顾这个解题过程,我们都做了什么?
学生交流汇报的同时教师板书。
第一步:理解整理(表格);
第二步:分析解答;
第三步:验证反思。
师总结:大家总结得很好,我们就是按照这样的过程解题的,这的确是一种解决问题的好办法。
四、巩固提升
1、出示:有5种商品,它们的平均价格是9.86元,期中前4种商品的平均价格是5.37元,第5种商品的价格是多少钱?
2、学生运用刚才的过程解题,然后交流想法
分析:根据5种商品的平均价格是9.86元,可以求出5种商品的价格和。同理,根据前4种商品的价格和。用5种商品的价格和减去前4种商品的价格和便可求出第5种商品的价格。
3、 汇报解答方法
9.86×5-5.73×4
=49.3-22.92
=26.38(元)
答:第5种商品的价格是26.38元。
4、完成练习四,第2题。