作为一位无私奉献的人民教师,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?的小编精心为您带来了五年级上册数学教案优秀8篇,在大家参照的同时,也可以分享一下给您最好的朋友。
教学目标:
1、通过自己的探索,掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。
2、在观察、操作、探索的过程中,提高自己动手操作的能力,进一步发展空间观念。
重点难点:
通过小组合作探究,掌握长方体、正方体体积的计算方法。
教学过程:
一、 创设情境,导入新课。
同学们,请看老师手里拿的什么东西?(笔盒、牙膏盒)谁大谁小呢?(引出体积的的概念)然后指出其中一个面,引出有关面积的知识。
长方形的面积与长和宽有关,正方形的面积与边长有关,长方体、正方体的体积可能与什么有关?今天我们一起来探究与之相关的知识。
二、 探究新知。
1、出示情境图,仔细观察思考,你们发现了什么?
①、长方体长、宽相等的时候,越高,体积越( )。
②、长方体长、高相等的时候,越高,体积越( )。
③、长方体高、宽相等的时候,越高,体积越( )。
2、做一做
用一些相同的小正方体(棱长1厘米)摆出4个不同的长方体,记录他们的长、宽、高。
3、观察长方体的体积与它的长、宽、高有什么关系,与同学说一说,你发现了什么?
长 方 体 的 体积=( )×( )×( )
↓ ↓ ↓ ↓
用字母表示( )=( )×( )×( )
=( )
正 方 体 的 体积=( )×( )×( )
↓ ↓ ↓ ↓
用字母表示( )=( )×( )×( )
=( )
4、独立完成课本47页“试一试”1题。
①观察阴影部分的面积是各个图形的什么?( )
②想一想,知道了底面积和高,如何计算长方体或(正方体)体积?
长方体(正方体)的体积=( )×( )
v=( ) ×( )
三、巩固练习。
1、估一估这个笔盒的体积有多大?分小组量一量、算一算。
2、计算:(1)、一个长方体,长20厘米,宽12厘米,高5厘米,它的体积是多少立方厘米?
(2)、一个正方体,棱长是6分米,它的体积是多少立方分米?
(3)、一个长方体,底面积是60平方厘米,高是7厘米,它的体积是多少立方厘米?
四、课堂总结评价
1、同学们,今天,你学会了什么?用什么办法得出长方体(正方体)的体积公式的呢?
2、在这节课里,你表现怎么样?你觉得那位同学(或哪个小组)表现好?好在哪里?
五、布置作业
请你设计一个体积是210立方米的游泳池。
一、开门见山,直奔主题。
1、 了解新知。
看大屏幕,问:今天我们学习的内容是什么?(板:长方体体积的计算)长方体体积应该怎样计算呢?
(板:长方体体积=长×宽×高)你是怎么知道的?对于长方体的体积你还知道哪些知识?
2、 引发矛盾。
引:知道真不少,那你知道长方体的体积为什么等于长×宽×高吗?看来我们对长方体体积的学习还不太全面,还有些问题。所以对于学习老师想送给大家一句名言,我们一起来看。
3、 渗透学习态度一(出示“学贵有疑,小疑则小进,大疑则大进。——陈宪章”)引:快速地小声读一读,这是清代学者陈宪章的一句话,老师觉得我们学习数学也应该像这句话说的那样勤于思考,经常问自己一个为什么,时常拥有一双发现问题的眼睛。课前没有做到,老师希望接下来我们探索长方体体积由来时能做到,好不好?
设计意图:让学生借助预习(或自学)的力量,直接揭示课题,既符合学生的认知规律,又充分了解到学生学情底数,同时调动了学生学习积极性,为学习新知作好铺垫。最后,在“学贵有疑”的学习态度渗透中,自然的引出下一环节。
二、引导探究,获得新知。
课件(或教具)演示
1、一排一层的长方体。(出示:1立方厘米的小正方体。)
问:这是一个棱长1厘米的小正方体,一起告诉我,它的体积是多少?2个这样的小正方体的体积是多少?3个呢?4个呢?
小结:也就是说由几个1立方厘米的小正方体组成的长方体体积就是几,是这样吗?
2、3排1层的长方体。
再问:我们再来,1排4个1立方厘米的小正方体,2排多少个?3排呢?这么快,你是是怎么做的?
小结:也就是说用每排的个数4×排数3就可以求出这个长方体含有多少个1立方厘米的小正方体,是这样吗?(板:小正方体个数=每排的个数×排数)
3、3排2层的长方体。
再问:这个长方体含有多少个1立方厘米的小正方体,所以它的体积是多少?好我们再来,一层12个1立方厘米的小正方体,2层多少个?这次你是怎么做的?
小结:也就是说在前面的基础上再乘层数2就可以求出这个大长方体含有多少个1立方厘米的小正方体,是这样吗?
4、释疑辅垫。
引:学贵有疑,这里有问题了,为什么前面没有乘层数就求出了1立方厘米的小正方体呢?(引导出前面两个长方体的层数都是1,第一个长方体的排数是1)(板:小正方体个数=每排的个数×排数×层数)
5、数个数验证。
再引:数学是严谨的,用每排的个数×排数×层数求小正方体个数这个方法是否真的可行,下面我们一起来数一数,(课件或教具演示)结果相同吗?说明这个长方体的体积是多少?
6、引导发现。
引:学贵有疑,小疑则小进,大疑则大进,做到这里,对于长方体体积的由来你想到了什么?(注意评价
学生回答:他说的好不好?好在哪?)引导出每排个数相当于长方体的长,排数相当于宽,层数相当于高。
小结:现在大家知道长方体体积为什么等于长乘宽乘高了吗?由公式可以知道求长方体的体积只要知道什么就可以了?
设计意图:借助教具、学具,通过老师的引领,让学生的多种感官都参与到教学活动,在操作中发现规律,为学生创设了良好的思维情境,在头脑中建立长主体体积由来的表象,促使学生形成新的认知结构,突破教学难点,顺利地抽象出长方体体积公式。
过渡:知道了长方体体积公式的由来,老师觉得学习还不能停止,在这里,老师还想送同学们一句名言,一起来看。
三、操作验证、巩固练习。
1、学习态度二。(出示:纸上得来终觉浅,绝知此事要躬行)
引:也来快速地小声读一读,这是宋代诗人陆游的一句诗,它告诉我们从书本上或从别处得来的知识,还需要我们亲自动手实践一下,才能记得牢,理解得透。
2、拼摆计算。
引:现在老师就给大家这个机会,利用1立方厘米的小正方体用计算的方法自已来算一算长方体体积是不是真的等于长×宽×高,请同学们注意要求:
1、以小组为单位来摆,注意分工协作,
2、请填好记录单,注意发现新的问题。开始。
小结:还是那句话:数学是严谨的,通过自己来动手验证得到的知识才是最可信的。
3、学生汇报验证过程。
设计意图:通过学生熟知的陆游诗句,进一步体会数学学习的严谨性,充分相信学生,让学生自己动手,在小组合作中验证新知,再现长方体体积由来的过程,使学生加深“知其所以然”的理解,进而有效地培养学生操作及探究能力。
引:现在长方体体积公式可以确认了吗?它是什么?下面我们就用它来解决一道实际问题。
4、解决问题。(出示例题)先估算体积再独立计算。
5、巩固练习。
引:为了巩固新知,老师还准备了两个小题,还能不能做?
1、练一练第1题。
直接口答列式。
2、练一练第3题。
先谈注意问题再解答。最后拓展此题的古代解法。
3、拓展新知。
引:这是生活中一道典型的求体积的题,实际上它的解法早在2000年前就已经有了,我们来看一看。
(出示:“方自乘,以高乘之既积尺”)这是2000年前我国古代一本数学专著〈九章算术〉的解法,和我们现在的解法一样吗?你觉得我国古代的数学家怎么样?
设计意图:通过不同形式的练习既深化了知识,又培养了学生综合运用所学知识解决简单的实际问题的能力,同时也拓展了学生对古代数学的了解,升华了认知。
四、总结回顾,深化体验。
问:通过这节课学习,你有什么收获?有什么感受?
总结:老师也想通过这节课告诉大家,我们学习,不光要记住知识,还需要经常问问为什么,更需要自己动手验证新知的正确性。最后,我还想送大家一句名言,一起看(出示:天下事有难易乎,为之,则难者亦易矣;不为,则易者亦难矣。人之为学有难易乎?学之,则难者亦易矣;不学,则易者亦难矣。——彭端叔)无论学习还是做事,是没有难和易之分的,只要你去学,你去做,再困难的事也会变得很容易。知难而进是我们的学习态度。
设计意图:“谈收获”是对所学知识部分的整理,“谈感受”是学生情感方面的升华,尤其是“名言”的总结,进一步使学生对今后的生活学习有了概括性引领和提升。
教学目标
1.通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。
2.通过欣赏图案,发展同学的审美意识和空间观念。
3.自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。
重点难点:
1.进一步利用对称、平移、旋转等方法绘制精美的图案。
2.加深感受图形的内在美,培养同学的审美情趣。
教学准备:
课件、方格纸、正方形白板纸、手工纸三张和剪刀等。
教学过程:
一、展览导入
课前让同学收集图案,以小组为单位进行交流。
考虑:这些图案是怎样设计的,它有什么特点?
指名介绍本组中最美的图案,并结合考虑说一说它的特点。
二、学习新课
(一)尝试发明:
让同学做第8页第1、2题。
1、鼓励同学用学过的图形设计图案,对不同的同学提出不同的要求。
2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。
(二)设计图案:
做第10页“实践活动”7题。
1、提出三个步骤:
(1)先选择一个喜欢的图形;
(2)再确定你选用的对称、平移和旋转的方法;
(3)动手绘制图案。
2、分别利用对称、平移和旋转创作一个图案后,全班交流。
三、巩固练习
(一)反馈练习:
1、制作“雪花”:
取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。
2.作品展示。
3、独立观察并尝试做第9页第5题。
四、全课总结
全班交流各自的作品,选出好的`作品互相评价,全班展览。
我所在的班处在农村地区,班级有40名学生。其中优生的比例约占40%,合格的约占20%,极差的学生有5%。班级总体感觉良好,对学习数学有比较浓厚的兴趣,思维活跃,有自主探索知识的学习习惯,成绩稳定。但是家长的辅导不令人满意。
教学目标:
1、知识与技能:掌握数方格的顺序和方法,能用数方格的方法计算一些不规则图形的面积,能正确估计不规则的图形面积的大小。
2、过程与方法:能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的必要性和重要作用。
3、情感态度价值观:提高学生运用数学知识解决实际问题的能力,让学生体会数学源于生活,用于生活。让学生欣赏大自然的美,使学生体会环保的重要性。
教学重点:利用方格图估计不规则图形面积。
教学难点:估算的习惯和方法的选择。
教学过程:
一、情境引题,学习新知:
1、创设情境,揭示课题:
师:从我们牙牙学语到认识数字,从我们拿起笔到记录生活中的开心快乐,同学们每天都在不知不觉中成长。我想:只要同学们努力学习科学文化知识,成功的道路上必将留下你们一串串成长的脚印。(揭示课题:成长的脚印)
2、情境入题,学习新知:
师:今天,老师带来了小华出生时的脚印图片。怎样才能知道这个脚印的面积有多少呢?
(1)学生自己先独立进行估计,然后小组内进行交流。
(2)全班交流:
生1:我们是用数格子的方法来进行计算的,我先数了数满格的大约是11个,其他不够一个格子的我进行了拼补,这样大约是17cm2。
生2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18 cm2。
师:大家都是用数方格的方法估计的,还有没有其他的估算法呢?
生1:可以把这个脚印看成了近似的长方形,长8厘米,宽2厘米,所以面积是2×8=16 cm2。(课件演示此方法)
生2:我有个不同的方法,我是看成了近似的梯形,上底约2厘米,下底约2.5厘米,高约8厘米,根据梯形的面积公式,算出(2+2.5)×8÷2=18cm2。
(3)课件出示小华两岁时的脚印,学生估面积:
3、小结方法,实践新知:
(1)师:刚才大家对像脚印这样的不规则图形的面积进行了估算,想想刚才大家用什么方法进行估算的?
师板书:1、借助方格图数一数所占的格数。
2、把它看成一个近似的规则图形,测量后进行计算。
(2)请同学们算一算自己脚印的面积约是多少?
学生自己先独立取脚印,然后借助附页3的方格图估算脚印面积。
二、新知实践,解决问题:
1、估算不规则图形的面积:
(1)学生独立进行估计:
(2)交流汇报时让学生说说自己是怎样估计的。
2、估算手掌的面积:
(1)师:估一估自己手掌的面积:
(2)学生合作估算并在方格纸上验证:(学生在此环节开展好帮差活动)
三、课后实践,体会环保:
1、估算一片树叶的面积:
2、体会绿树对环保的重要性:
(1)如果一棵树有10000片树叶,估算这棵树所有树叶的总面积。
(2)在有阳光时,大约每25 m2的树叶能在一天里释放足够一个人呼吸所需的氧气。这棵树在有阳光时,一天里释放的氧气能满足多少人呼吸的需要?
四、课堂回顾,总结提高:
同学们,今天你们有什么收获?有什么体会?说来听听。
板书设计:
成 长 的 脚 印
不规则图形面积的估算:
1、借助方格图数一数。
2、把它看成一个近似的规则图形,测量后进行计算
教学反思:
这节课的重点是掌握估计不规则图形面积的计算方法,难点是如何转化为近似的基本图形。在讲这节课之前,我一直觉得这节课很难教,学生应该很难理解如何近似的看成基本图。但是,结果出乎意料,学生理解掌握得不错,能够把不规则图形近似确定成基本图形,然后再计算。
首先,在课题引入时,先复习组合图形面积的计算方法——可通过“分割”或“添补”的方法,转化为已学过图形的面积,再计算。强化学生“分割”和“添补”图形的能力,为估算不规则图形的面积做铺垫。然后,通过课件展示几幅不规则的图形(如:树叶、鱼、布娃娃等等),让学生通过观察,说出他们的发现,这些图形有什么共同点?与以前学过的图形相比较,让学生通过对比,引导学生说出,这些图形都是不规则图形。最后,谈话引入新课:其实现实生活中有很多类似这样的不规则图形,如何估算这些图形的面积呢?这一节课,我们将共同探讨这个问题。让学生带着问题学习,有目的的学习,并知道学习估算不规则图形面积的重要性,这样他们学得更投入、更有热情!
在探索新知时,先出示“成长的脚印”图形,让学生通过观察,用自己喜欢的方法估算出“脚印”的面积,再让他们小组交流讨论,最后让学生说出自己的估算过程和思路。这时,很多学生还是用数方格的方法,但是学生在交流自己的估算过程时,就有疑问,不满一格而且又不规则的,如何更好的估算面积呢?先不直接告诉学生方法,让学生讨论可以用什么方法估算,最后还是没得到满意的方法。这时,学生带着强烈的好奇心,非常想要知道如何估算面积。此时,教师再引导学生通过“分割”“添补”的方法,把不规则图形近似的看成已学过的基本图形的面积,再计算。最后再通过课件演示这个过程,并在方格纸的“脚印”中画出近似基本图,给学生一种视觉上的刺激,让学生很直观地观察估算的过程,学会把不规则图形近似的看成基本图再计算的方法。再让学生用这种方法估算小华2岁时的脚印面积,让学生先独立完成,再全班交流,让学生说出他们是如何近似的看成基本图,最后也用课件演示整个估算过程,画出近似基本图。巩固学生把不规则图形近似看成基本图再估算的能力。
通过练一练的两道习题,再加强巩固估算不规则图形面积的方法,先让学生独立完成,再小组交流讨论,最后再全班交流。展示学生的作品,让学生说出他们自己的估算思路,全班学生一起观察判断是否估算正确,最后再用课件演示画出近似图。这个过程,让学生自己说出自己的估算思路,其他同学一起观察判断,既能锻炼学生的表达能力,也能锻炼学生集中精神注意判断同学的估算是否正确,还能检查学生是否已掌握此种估算的方法,一举三得,何乐而不为之呢?
教学内容:
最小公倍数
教学目标:
1、使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2、培养学生的观察能力、分析能力和归纳概括能力。
3、培养学生良好的学习习惯。
学习目标:
1、理解最小公倍数的意义
2、初步学会求两个数的最小公倍数。
学习任务:
任务一 理解最小公倍数的意义
任务二 求两个数的最小公倍数
教学过程:
一、激情导课
1、师:同学们,看今天我们要学习什么?(最小公倍数)
看到这个题目,你会想到我们以前学过的什么知识?(倍数)
2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。
3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。
二、民主导学
任务一
一、任务呈现
师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?
要求:先独立思考,不会的小组商量。
提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天
二、自主学习
教师巡视学习情况
三、展示交流
1、师:他们可选那几日外出?(12、24)
你是怎样选出来的?根据回答板书;
妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数
爸爸的休息日:6 12 18 24 30 -----6的倍数。
共同的休息日:12 24 -----4和6的公倍数
最近的一天:12------4和6的最小公倍数
还可以用集合图来表示,
2、仔细观察两组数据有什么特征?
3、再次强调 4 的公倍数就是妈妈的休息日
6 的公倍数就是爸爸的休息日
4 和6的公倍数就是爸爸和妈妈的共同休息日
4、最近是哪一天? 12
12也是这公倍数中最小的一个,叫做最小公倍数。
5、集合图还可以这样表示 出示课件
问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)
你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?
这样我们可以一眼看出4 和6的公倍数是12、24.
6、谁能用一句话说说什么是公倍数?什么是最小公倍数?
7、89页做一做
二、那如何求最小公倍数呢?
任务二
求两个数的最小公倍数
一、任务呈现
1、求6和8的最小公倍数
2、想一想
1、你还能想出几种求法?
2、公倍数有多少个?你能找出的公倍数吗?
3、两个数的公倍数和最小公倍数之间有什么关系?
二、自主学习
三、展示交流
1、把不同求法板书
2、交流以上三个问题
(三)检测导结
1、目标检测
求下列每组数的最小公倍数(要求5分钟)
2和7 4和8
3和5 6和15
2、结果反馈
一次正确5分,自己改正4分,帮助改正3分,
3、反思总结 谈谈收获和不足
第一单元:认识负数
教学内容:
1、 认识负数:教材第1 — 6页 例1 — 例4以及练习一
2、 实践活动:面积是多少 第10 — 11页
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
四、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。 黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
五、全课小结:(略)
(2)认识负数的应用
教学内容:p.3、4的例3、例4,完成第5页的练一练和练习一的第7~10题
教学目标:
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学准备:直尺等
教学过程:
一、谈话导入:
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。 学生举例(可能有的情况):
1、收入和支出:如果老师上个月的10日拿到1500元工资,为了强调“收入”,我可以这么记“+1500”,买衣服花了300元,可以怎么记?为什么?吃饭花了500元,怎么记???
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
3、上车与下车:(第10题),依次写出每一站的情况,让学生说说每一站是什么意思?特别是“0”;还可以结合某一站,让学生说说“—3,+8”其实人数有什么变化???
4、上楼与下楼:??
补充楼层,第下室的表示方法等。补充:楼房有正的几楼,也有可能会有负的几楼,会不会有0楼?为什么?
5、向东走、向右走:常见的方向有4个,东和西是相反的方向,南和被也是一对相反的方向。如果把想东走5米,记作+5米,那么向西走10米,可以怎么记?你是怎么想的?+10米表示什么呢?为什么?
如果+10表示的是向南走10米,那么,—10米表示什么?你是怎么想的?
比较这个话题与前面话题的不同:前面的正负数一般都有增加或是减少的意思,而这个正负数,只表示相反的意思?
小结:生活中很多具有相反的意思可以分别用正负数表示。
二、学生自学课本,把书上有关的练习完成,并可与同桌交流。
老师选巡视中发现问题较多的题全班交流。
(3)实践活动 面积是多少
教学内容:p.10~11
教学目标:
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
教学重点、难点:对图形进行分解与组合、分割与移拼的转化方法。
教学准备:学生课前剪好图上的三个不规则图形
教学过程:
一、复习面积:
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽
正方形面积=边长×边长
二、分一分、数一数:
1、取图1,问:它是长方形或正方形吗?像这样的图形,我们可以把它叫做不规则图形。 1小格表示1平方厘米,你知道它的面积是多少么?
方法一:数方格。一起数一数,数得74格
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
取图3,交流数的方法:说说在数格子的时候你遇到了什么困难?是怎么解决的?最后结果是多少?
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
(1)、出示池塘图。观察该池塘边的特点,说说你想怎么求它的面积?有什么困难?有什么好办法吗?
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。 学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
(2)、观察树叶图,它有什么特点?你能利用它的特点来更方便地数面积吗?
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。 交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
三、全课小结:
现在你知道怎么求一些较复杂图形的面积了么?
第二单元多边形面积的计算
教学内容:
1、平行四边形面积的计算(第12 — 14页)
2、三角形面积的计算(第15 — 18页)
3、梯形面积的计算(第19 — 21页)
4、实践活动:校园的绿化面积(第26 — 27页)
教学目标:
1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。
2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。
3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。
4、使学生在操作、思考的过程中,提高对“空间与图形”内容的学习兴趣,逐步形成积极的数学情感。
教学重点:平行四边形、三角形、梯形的面积计算公式
教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。 课时安排:10课时
(1)平行四边形面积的计算
教学内容:p.12~14
教学目标:
1、在学生理解的基础上,掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
4、培养学生对数学的兴趣、探究意识与合作的意识。
教学重点:理解并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形公式的推导过程
教学准备:剪刀、例题的图形
教学过程:
一、教学例题:
1、拿出图1,问:这是一个不规则的图形,比较复杂(板书:复杂),但通过观察,你可以把它剪一剪、拼一拼,边成一个学生熟悉的简单图形么?
(学生操作。)交流:转化成了一个正方形。
完成板书:复杂 转化成 简单(正方形)
比较:这两个图形面积有变化吗?为什么?
(没变。因为格子数没变;或说成纸片没有增加或减少??)
如果要你算出面积,你会先算哪一个?是多少?
(复习:正方形面积=边长×边长)
2、拿图2,请你用刚才的方法,也把它剪拼成一个简单的图形。(学生操作)问:这回你得到的是一个什么图形?(板书:长方形)
算出它的面积。(复习长方形面积=长×宽)
小结:通过剪、拼,我们可以把一个较复杂的图形转化成简单的图形,如长方形、正方形,它们的面积是一样的。长方形面积等于长乘宽,正方形面积等于边长乘边长。
3、拿图3:这是一个平行四边形,它的边叫什么?(底)
分别摸摸它的两组底。
还有什么?(高)
问:在现在这个方格纸剪成的平行四边形上,你能找到这组底的几条高?
观察:你能剪一剪、拼一拼,拼成长方形么?你有几种剪法?它们有什么共同的地方? 交流:只要沿着它的高剪,都可以拼成长方形。
举不同剪法的例子,让大家观察。
板书:长方形面积:长×宽(要求学生对号入座,说出算式)
平行四边形面积呢?为什么也是7×4=28平方厘米呢?
发现:平行四边形的底也就是长方形的长,平行四边形的高也就是长方形的宽。所以可以用
教学目标:
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题。
2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题
3.培养学生利用恰当的方法解决实际问题的能力。
教学重点:
通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系。
教学难点:
通过复习,使学生能够准确的找出题目中的等量关系。
教学过程:
一、复习准备。(P107)
1.找出下列应用题的等量关系。
①男生人数是女生人数的2倍。
②梨树比苹果树的3倍少15棵。
③做8件大人衣服和10件儿童衣服共用布31.2米。
④把两根同样的铁丝分别围成长方形和正方形。
(学生回答后教师点评小结)
我们今天就复习运用题目中的等量关系解题。(板书:列方程解应用题)
二、新授内容
1、教学例3、
(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
①.读题,学生试做。
②.学生汇报(可能情况)
(90+75)×4
提问:90+75求得是什么问题?再乘4求的是什么?
90×4+75×4
提问:90×4与75×4分别表示的是什么问题?
(由学生计算出甲乙两站的铁路长多少千米。)
(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?
(先用算术方法解,再用方程解)
①、660÷(90+75)=?
②方程
解:设经过x小时相遇,
(90+75)×x =660或者, 90×x +75×x =660
让学生说出等量关系和解题的思路
教师小结(略)
(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?
(先用算术方法解,再用方程解)
①、(660—90×4)÷4=?
②、方程
解:设货车每小时行x千米
90×4+ 4x = 660或者(90 + x )×4 = 660
让学生说出等量关系和解题的思路
教师小结(略)
让学生比较上面三道应用题,它们有什么联系和区别?
比较用方程解和用算术方法解,有什么不同?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈。(P109---1题)
1.根据题意把方程补充完整。
(1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看。
_____________=53
_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元。一共用去139.5元。
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米。
_____________=280×3
2.(P110----4题)解应用题。
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨。剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法。
3.思考题。
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港。客船开出12小时后与货船相遇。如果货船每小时行15千米。客船每小时行多少千米?
四、课堂总结。
通过今天的复习,你有什么收获?
五、课后作业。
(P110---5题)不抄题,只写题号。
板书设计:
列方程解应用题
等量关系具体问题具体分析
例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千
教学内容:
课本第52页。
教学目标:
1.掌握用计算器进行一些稍复杂的小数加、减法的计算方法,能正确进行计算,正确率达到90%以上。
2.体会使用计算器工具进行计算更简单,更快捷,初步学会使用计算器探索一些简单的数学规律。
3.体会数学学习的趣味性和挑战性。
教学重点:
用计算器正确计算稍复杂的小数加、减法的方法。
教学难点:
在计算器上暗处纯小数的简便方法,利用计算器探索规律。
教学准备:
课件
教学过程:
一、口算热身。(3分钟左右)
算一组一位小数、两位小数的加减法(不进位、不退位),共8题。
0.2+0.8= 0.76-0.36=
5+4.8= 6.9-0.5=
5.4+3.6= 7.72-6.52=
3.6+2.1= 9.1-1.1=
二、自学例3。(15分钟左右)
1.明确例3中的数学信息及所需要解决的问题。
出示:教材例3情境图。
导入:图中有哪些数学信息?围绕导学单进行自主学习。
2.自学。
导学单(时间:5分钟)
1.根据所求的问题列出算式,估算结果。
2.尝试用计算器计算。(你遇到什么问题?)
3.对照书本第52页例3的提示,自己的方法不同在哪里?怎样按键更简便?
4.模仿练习:用计算器计算下面各题。
4.75+12.63=
7.03-0.895=
0.268+3.87=
导学要点:
在计算器上输入小数,可以按照顺序依次按键。
用计算器再算一遍,进行检验。
3.小组交流。
交流内容
1.你是怎样在计算器上输入买铅笔的钱数的?
2.小数部分是0的小数还可以怎样按键?
4.全班交流。
分析学生在自学中出现的各种情况,给予适当点评。
三、练习。(15分钟左右)
(一)适应练习。
1.第52页试一试,用计算器计算并验算。
点拨:可以直接利用例3的得数来列式计算,也可以用100一次减去每种商品的金额。
2.第52页练一练,比一比,看谁算得又对又快。
同桌互相核对计算结果。
提醒:
要按照运算顺序连贯地进行计算。
(二)比较练习。
1.完成第53页练习九第1题。
每桌南边的学生用笔算或口算进行计算;
每桌北边的学生用计算器进行计算。
2.完成第53页练习九第2题。
用计算器进行计算并填表
示范:
用上月余额减去9月2日买米、油等的金额等于9月2日的余额。
点拨:
用上次余额减去本次用去的金额就等于本次余额。将两次收入相加等于合计
收入,7次支出相加等于合计支出。
(三)探索练习。
第53页练习九第3题。
用计算器计算上面三题
思考:这三题有什么规律吗?
用计算器完成第四题
(四)应用练习。
第53页练习九第四题
先列式,再用计算器进行计算。
(五)创编练习。
1.小马虎在计算1.86加上一个一位小数时,由于错误地把数的末尾对齐,结
果得到2.19,你能帮他算出正确答案吗?
2.用计算器计算,探索规律。
1122÷34=
111222÷334=
11112222÷3334=
111111222222÷333334=
四、课堂总结:
通过这节课的学习,你学到了什么知识?