北师大五年级数学上册教案【最新6篇】

作为一名默默奉献的教育工作者,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案要怎么写呢?的小编精心为您带来了北师大五年级数学上册教案【最新6篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

北师大版五年级上册数学教案 篇1

教材依据:

北师大版小学数学五年级下册第二单元长方体(一)中的长方体的表面积

设计思路:

新课程标准提倡“合作交流,自主探究”的学习方式。学生的数学学习活动是一个生动活泼、主动的和富有个性的学习。注重学生通过观察、操作、归纳等手段,在小组合作中,认识长方体的基本特征,发展学生的空间观念。

教材分析:

本节教学内容是学生在前面已经认识了长方体和正方体的面、棱和顶点特征,以及展开与折叠的基础上进行教学的。通过本节课学习可以巩固学生对前两节课内容的理解,同时为后面学习长方体的体积奠定了基础,可以更好的发展学生的空间观念。

学情分析:

由于是小学五年级学生,虽然在前面认识了长方体和正方体,了解了面和棱的特征,学习了展开与折叠,但学生的空间观念还不强。特别是对立体图形表面积的认识,还有一定的困难,还需借助于直观的立体图形,通过动手操作来观察发现规律。

北师大五年级数学上册教案 篇2

教材学情:

《折纸》是北师大版小学数学第九册第四单元的一个学习内容。在这个内容之前,学生已掌握了分数的基本性质,学会了约分、通分的方法,懂得了同分母分数加减法的算理,其中同分母分数加减法的计算方法是本节课最直接的知识起点。本节课的内容又是进一步学习分数加减混合运算的基础,同时又是本单元的重点。

异分母分数加减法的法则是:先通分,再按同分母分数加减法的法则进行计算。五年级的学生,在三年级时已学习了同分母分数加减法,在上一个单元里又掌握了通分的技能。因此,对学生而言,作为构成计算法则的两个重要知识点都已具备,在这节课里,重点是引导学生想到“化异为同”,把异分母分数转化为同分母分数来解决问题。

教学目标:

(一)知识目标

1、使学生理解异分母分数加减法的算理,能正确计算异分母分数加减法。

2、渗透转化的数学思想,初步学会用转化的方法解决一些数学问题。

(二)能力目标提高学生的计算能力和运用所学知识自主解决问题的能力。

(三)情感目标激发学生积极参与数学学习活动的兴趣,并从中获得成功的情感体验,建立学习自信心。

教学重点:

掌握异分母分数加减法的计算法则

教学难点:

理解只有相同单位的数才能直接相加减的算理

教学准备:

多媒体课件、彩笔、正方形纸片

教学教法:

本节课我主要采用“引导探究式教学法”:即设置问题情境→提出问题→探究问题→解决问题→归纳小结→巩固应用。在老师的引导下,以问题为思维的主线,学生先想先做,老师后讲后帮;在教学过程中,主要着眼于“引”,启发学生“探”,利用学生原有的认知水平,激发学生的求知-,促使学生探究解决问题的方法,从中掌握发现问题,解决问题的规律,把“引”与“探”有机结合起来。在主要运用“引探教学法”的同时,结合运用直观教学法、对比教学法、知识迁移法等多种教学方法的有机组合,让学生经历数学知识产生的过程,在具体的情景和数学活动中获取数学知识。

教学学法:

在本节课中,根据学生的心理特点和认知规律,注重在计算法则的引入和形成的过程中,充分发挥学生的主体作用,组织学生自主探索算法、合作交流做法,真正地让全体学生主动、有效地参与教学,体验转化思想在数学中的运用,经历观察、探索、归纳的数学活动,自主推导计算法则。具体学法有自主探究法、合作交流法、动手操作法、练习巩固法等。

教学过程:

为了达到教学目标,我把本节课的教学流程设计为:复习导入,铺垫孕伏→创设情境,提出问题→自主探究,学习新知→巧设练习,巩固新知→课堂评价,师生小结等五大环节。

一、复习导入,铺垫孕伏

我通过设计“把下面各组分数通分”和“口算同分母分数加减法”来复习通分和同分母分数加减法的法则,目的是为学好新课打下基础。

二、创设情境,提出问题

为了激发学生学习的兴趣,让学生感受到数学的实用性,我从学生生活实际出发,从现实生活中的“手工折纸”引入新课,提出问题,引导学生思考“他俩一共用了这张纸的几分之几”。体现数学来源于生活,生活中处处有数学的教学理念,让学生感受到数学就是解决生活实际问题。

三、自主探究,学习新知

新课程倡导,在教学中,教师要重视学生的主观能动性,尊重学生的已有知识和经验,学生也只有通过自己的努力掌握了知识才能树立学习的自信心,才能创造性地学到新的知识,这样的知识才具有生命的活力。本教学环节是主要环节,我分四步进行。

第一步,学习异分母分数加法。我放手让学生通过折一折、画一画、算一算和独立思考、小组合作等教学方式,培养学生解决问题的能力和合作意识,通过师生验证、讨论交流等形式,逐步掌握异分母分数加法的计算方法。为了突破教学难点,我还故意出错题让学生判断,以此让学生理解只有相同单位的数才能直接相加减的算理。

第二步,学习异分母分数减法。由于学生学会了异分母分数加法的计算,所以在此环节中,我又大胆放手让学生自学,通过思考独立完成,让学生经历学习过程,获取成功的体验,建立自信心,培养自学能力。

第三步,算法优化。在解决异分母分数加法、减法的过程中,学生分别用了折纸、画图和计算的不同解法,我让学生比较哪一种算法更好、更方便,引导学生在算法多样化中选择算法化。

第四步,讨论归纳计算法则。先让学生在小组内说说“怎样计算异分母分数加减法”,然后组织全班交流归纳。通过发挥学生合作交流的作用,引导学生自己推导出计算法则。

四、巧设练习,巩固新知

针对本节课的重点、难点,我设计了以下三个层次的练习。

1、基本练习,如“看图填一填”。旨在展示计算全过程,给差生“拐杖”,力保“双基”。

2、综合练习,如“计算”。完成这一层次的练习不仅要用到异分母分数加减法的计算法则,而且要综合运用“通分”、“约分”、“把假分数化成带分数或整数”等知识点,设计意图在于强化算理,提高计算技能。

3、应用练习,如“解决问题”。把所学知识应用于解决生活实际问题,体现“数学来源于生活,应用于生活”。

五、课堂评价,师生小结

新课程倡导评价的多元化,关注学生的学习过程。在教学中,我注意及时表扬鼓励学生,调动学生学习的积极性,激发创新意识;在本节课的最后环节,注重引导学生总结知识经验,完善认知结构。

总之,在本节课的教学中,我能以学生为主体,发挥教师的主导作用,充分调动学生学习的积极性,引导学生自主探究、合作交流,经历数学知识的形成过程,注重培养学生发现问题和解决问题的能力,提高课堂教学效果。

北师大版五年级上册数学教案 篇3

教学目标:

1、使学生理解长方体和正方体表面积的含义,在理解的基础掌握长方体表面积的计算方法。

2、通过动手操作,合作交流。培养学生的观察能力、概括推理能力。发展学生的空间观念。

3、通过自主探究,发展学生的空间观念。调动学生学习的积极性,激发学习数学的兴趣。

教学重点:

建立表面积的概念和长方体表面积的计算方法。

教学难点:

找出长方体的长、宽、高和每一个面的长和宽之间的关系。

教学准备:

1、教具:长方体纸盒、长方体纸盒展开图,课件。

2、学具:长方体纸盒、剪刀。

教学过程:

一、游戏激趣 ,导入新课。

1、同学们,我们来玩个“猜谜语”游戏,猜对的同学可以获得奖品,请听题

(1)紫色树,紫色花,紫色花开结紫瓜,紫瓜柄上长小刺,紫瓜里面装芝麻。(打一种蔬菜)

(2)红公鸡,绿尾巴,脑袋埋在地底下。(打一种蔬菜)

2、大家的表现真出色,我还为同学们准备了一个大礼物,想将它送给这节课发言积极的同学,可是这个盒子不漂亮。现在我要用彩纸包装一下。(师动手包装)

你知道我用了多大的彩纸吗?解决这个问题,也就是要求长方体的什么?(长方体的表面积)看看长方体有几个面?是那几个面?(学生找出后,标出上、下、前、后、左、右面)重新摆放长方体,它的前面在哪里?在长方体的这几个面中,那些面的大小是相等的?这几个面的面积大小也就叫做什么?(长方体的表面积)板书课题

【设计意图:好的开头是成功的一半。因此在课始就设计小学生感兴趣的游戏活动,调动学生学习的热情。利用发奖品时,遇到的新问题引入新课。再现生活中的包装情景,使学生更能体会到长方体表面积计算在生活中的应用,也使表面积概念更直观,形象化。】

二、动手实践,探索新知。

(一)长方体表面积的意义。

1、请同学们拿出自己的长方体学具,想想刚才包装的是长方体的哪几个面里?什么叫长方体的表面积?标出“上”、“下”、“前”、“后”、“左”、“右”面。

2、观察每个面的长和宽与长方体的长、宽、高有什么关系?(同桌交流后,汇报交流)

(二)长方体表面积的计算方法。

1、动手操作、自主探究。

那么怎样计算你的长方体盒子的表面积哪?

请同学们在小组内通过量一量、剪一剪、拼一拼、摆一摆的方法,试试求出长方体的表面积,同时把讨论的结果写在记录单上(形式不限),看哪一小组想出的方法多。

(教师对学习困难的学生进行指导)

2、交流汇报、总结规律。

(1)哪一个小组到前面来汇报你们的研究成果?

学生汇报算式,引导观察,用什么方法计算表面积的?(对表达流畅,思维敏捷的进行鼓励)

(2)小结长方体表面积的计算方法,根据学生的'回答并板书。

分析这几种计算表面积的方法,为什么这样算?在这几种算法中你喜欢用哪一种?与同桌说一说。

【设计意图:学生是学习的主人,让学生经历知识的形成过程,自己构建知识。利用充足的时间,动手操作,探索、交流合作,发现规律,获得新知。】

3、即时反馈、巩固新知。

请同学们算一算,老师的这个礼品盒的表面积是多少?(独立思考后,小组内交流汇报)还有别的计算方法吗?你认为那种方法简便?

【设计意图:运用新知解决问题,初步体验数学的有用性,数学与生活的紧密联系。在多样化算法中,引导学生比较,并逐步理解各种算法的优缺点。在解决问题中自觉实现化算法】

(三)尝试探索正方体表面积的计算方法。

正方体的表面积应该如何计算?

讨论,指名反馈,得出正方体表面积的计算方法。

正方体的表面积=棱长×棱长×6,为什么要乘以6?

1、给棱长为0.8米的正方体木箱表面涂上油漆,涂油漆部分的面积是多少?(独立探索,再交流计算方法。)

如果正方体木箱没有盖,涂油漆部分的面积是多少?

【设计意图:通过计算正方体表面积,进一步理解表面积含义。通过变式练习,体会用数学解决实际问题时,要灵活运用。】

2、归纳小结。

计算长方体、正方体表面积的关键是什么?如何计算?

北师大五年级数学上册教案 篇4

教学目标:

1、理解分数、小数相互转化的必要性。

2、能正确地将简单分数、有限小数相互转化。

3、使学生掌握分数化小数的一般方法,掌握最简分数化成有限小数的规律,培养学生观察、比较、判断。归纳的思维能力。

重点难点:

掌握最简分数化成有限小数的规律。

教具准备:

多媒体课件和题卡。

教学过程

一。 导入新课

1.复习。

(1)说说下面小数的意义:

0.2表示( )分之( ),0.75和0.625呢?

(2)把下面的分数化成小数,并说出方法。

1/10 3/100 51/1000

2、激趣引入。

同学们,你们每天都看课外书吗?每天看课外书的时间是多少?(学生自由说,汇报交流。)

这节课,我们就来研究一下看课外书的时间能给我们带来哪些数学问题。(板书:看课外书时间)

二、探究新知

1、课件出示主题图。

下面我们来了解林林和明明每天的看课外书时间。

2、观察主题图,理解图意。

请同学们仔细观察图表,从中你得到了哪些数学信息?(板书:林林0.4时 明明1/4时)

3、提出问题,进行估计。

请同学们估一估,谁用的时间多一些?(板书:谁用的时间多一些?) (估计汇报并说明道理。)

4、解决问题的探索。

同学们有的说林林的多,有的说明明的多,怎样才能精确的比较出谁用的时间多呢?

(1)自主探索。请同学们独立思考并记录下解决过程,你用了什么样的方法进行比较。

(2)合作交流。和小组的同学交流一下自己的比较方法。

(3)全班汇报。哪个小组先来汇报你们的比较方法?(根据学生的汇报,教师进行板书。)

5、课件展示课本中呈现的方法。

老师用课件展示课本上给我们呈现的方法,看不清的请看课本上相应的图。注意对照你们探索出来的方法,哪些方法是与你们相似的,哪些方法是没有想到的。(每展示一幅图时指名学生说说比较的方法)

6、讨论并归纳分数、小数的互化方法。

<1>分数化成小数

(1)做课本上的试一试第2题。(独立练习)

(2)请同学们讨论并归纳出分数化成小数的基本方法是什么?(小组讨论全班汇报课件展示)

<2> 小数化成分数

(1)做课本上的试一试第1题。(独立练习集体订正,教师板书)

(2)请同学们讨论并归纳出小数化成分数的基本方法是什么?(小组讨论全班汇报课件展示)

三、巩固练习

1、把下面的分数化成小数,把小数化成分数。(课件出示练习题)

17/20 7/8 14/ 25 0.57 1.23 7.4

2、比较下面数的大小。(课件出示练习题)

2/3 , 0.67 , 5/8

3、 把3/4 5/14 13/40 5/6化成小数,你发现了什么?

怎样解决?

(1)引导学生观察:每个分数所化成的小数,是什么样的小数?每个分数的分母与这个分数所化成的小数有什么联系?

(2)学生把每个分数的分母分解质因数。

(3)观察质因数,启发学生想一想:什么样的分数能化成有限小数?什么样的分数不能化成有限小数?

(4)引导学生概括。

四、课堂小结

1、通过这节课的学习你有哪些收获?(分数、小数的互化)

2、进行分数、小数的互化时有什么要注意的?(如,分数化成小数除不尽时,要;小数化成分数不是最简分数时,要)

五、实践活动

请同学们在自己周围寻找用分数或小数表示的信息,将寻找到的信息与同学进行交流。

北师大五年级数学上册教案 篇5

教学目标:

1、能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;

2、发展归纳与概括的能力;

3、了解数学发展的历史,感受数学文化的魅力。

教学重点:

引导学生发现和概括点阵中的规律

教学难点:

寻求多种解决问题的方法,体会图形与数的联系

教学过程:

一、创设情境,生成问题

1.观察图形中的规律

上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?

(出示幻灯片3)3:生观察说规律,可提示,师总结)

2.观察一组数的规律。

看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 )

如果有困难不能出色完成,那我们今天就来一起研究,从而导入

3.出示点子图

同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法

好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!

二、探索交流,解决问题

1.渗透不同的观察方法

(1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。

(2)指名说怎么观察的?它们之间有什么变化?

(副板书:横竖看、斜着看、拐弯看)

(3)设问,那第5个点阵有多少个点?请画出此图形。

2.小组探究

同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的合作研究;再次出示幻灯片6。

合作任务

1、选择一种观察顺序,用线条分一分这几个图中的点。

2、根据划分的结果写出算式来表示这几个数。

3、想一想,你们从中发现了什么规律?

1=()4=()9=()16=()

(1)学生分组探究,师巡视

(2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)

①生展示分法、算式和规律其他组补充总结规律

②学生说算式师板书

③拓展aa

第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书55)第10个呢?

后两种:下一个图形的算式是什么?(副板书下一个图形的算式)

算一算结果是25吗?

④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!

3.小结

同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。

4.揭示点阵

那么,同学们,在寻找这一组数的规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)

点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。

三、巩固应用,内化提高

(一)试一试

怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。

1、观察下列点阵,你能根据规律画出下一个图形吗?

请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)

生画展示:说明为什么这样画?(有不同的想法吗)

2、下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。

这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)

生做展示算式拓展下一个,你能画出地5个图形,再来研究第4个图形。

(拓展)你还有什么发现?展示幻灯片11。

除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)

(二)拓展延伸

出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?

我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。

对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。

四、回顾整理,反思提升

1、同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)

2、你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。

板书设计:

点阵中的规律

1、正方形点阵

2、长方形点阵

3、三角形点阵

4、其它点阵

小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,

感受数学文化的魅力,同一问题有不同的思路和解决方法。

北师大五年级数学上册教案 篇6

教学内容:

北师大版小学数学五年级上册。(教科书第82、83页。)

课标分析:

本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。

教材分析:

本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。

学生分析:

1、学生的知识基础

五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

2、学生的能力基础

学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

教学目标:

1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

2、培养学生推理、观察、归纳和概括能力。

3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

教学重点:

探究发现点阵中的规律。

教学难点:

总结概括规律。

教学准备:

课件,五子棋,磁扣等。

教法学法:

1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入

2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思

教学过程:

一、展示图片,引出课题

1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。

师:这些图片有什么特点?

生:好像都是由点组成的。

师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。

早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。

二、细心观察,探求规律

1、出示正方形点阵,探索正方形点阵的规律。

A、第一个规律。

师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)

(1)每个点阵可以看成什么图形?

(2)每个点阵中分别有多少个点?你是怎样观察出来的?

小组讨论,指名回答。

师:每个点阵可以看成什么图形?(正方形),同意吗?

生1:我认为第一个点阵不能看成一个正方形,是一个圆形。

师:其他同学也同意他的观点吗?

师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?

师:每个点阵中分别有多少个点?

生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。

师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?

生:我是通过数出每个点阵中点的个数得到的。

师:谁还有不同的方法?有没有更快一些的方法?

生:我是通过计算得到的。

师:能具体说一说是怎样通过计算得到的吗?

生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。

师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?

生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)

师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)

师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?

(这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)

B、第2个规律

师:刚才我们是怎样观察的?(横着数和竖着数)

正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?

“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)

观察并思考

(1)分别用算式表示每个点阵点的个数。

(2)你发现了什么规律?

学生汇报,教师板书

第1个:1=1

第2个:1+2+1=4

第3个:1+2+3+2+1=9

第4个:1+2+3+4+3+2+1=16

第N个:1+2+3+N++3+2+1

师:“谁发现什么规律呢?”

生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。

师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。

刚才是横竖数,“第几个点阵就是几乘几”。

C、第3个规律

师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?

师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。

小组代表汇报。

生:(总结)每用折线画一次后,点阵中的个数是

1=1 1+3=4 1+3+5=9 1+3+5+7=16

师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,

师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”

教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”

通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。

师:真了不起。这种划分方法,我们可以叫做“折线划分法”。

第几个点阵,就是从1开始加几个连续奇数。

通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。

(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)

刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?

(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)

三、牛刀小试

1、 (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?

生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。

小组交流,研究:上面的点阵还有其他的规律吗?

生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。

生;1,1+2,1+2+3,1+2+3+4

师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)

上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)

四、兴趣优在:(课件出示教材第83页练一练)

第2题:按规律画出下一个图形。

师:这道题就象梅花桩,指第一个,走了几个梅花桩?

生:3个。

师:指第二个,共走了几个梅花,增加几个桩?

生:7个,增加了4个。

师:指第三个,共走了几个梅花桩,又增加了几个桩?

生:13个,又增加了6个。

师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。

生:交流,探索总结规律

(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)

五、知识拓展

欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。

师:点阵不只是点,很多有规律的排列,都可以看成点阵。

投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。

六、课堂小结

师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?

七、课后操作

自创新的点阵图,并说出点阵规律。

一键复制全文保存为WORD
相关文章