本节课教材首先创设了一个“水果店”的情境,从学生已有的生活经验出发,呈现了生活中的数有自然数、负数,也有小数,在比较中认识自然数和整数,使学生对数的认识进一步系统化。一起看看新人教版小学五年级数学上册教案!欢迎查阅!
教学目标:
(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。
(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。
(三)培养学生养成良好的学习习惯,提高学生的计算能力。
教学重点:
掌握整数、小数四则混合运算的运算顺序。
教学难点:
提高学生计算正确率以及约等号的正确使用。
教学过程:
一、复习准备
1.口算
12+0.12= 7.2-0.2= 3.5÷0.35=
2.95+0.05= 5-0.6= 2.8÷0.14=
8÷12.5= 1.2+2.8-3.99= 4×1.72=
3.74+6.26= 4.5×6= 0.25×4÷0.2=
2÷4= 20×0.2= 20.75-9.5=
3.5×8×0.125=
2.提问
(1)我们学过哪几种运算?
(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)
(3)整数四则混合运算的顺序是什么?
二、学习新课
1.学习例1:3.7-2.5+4.6= 3.6×6÷0.9=
(1)思考:以上两题中分别含有什么运算?运算顺序怎样?
(2)学生试算后订正。
3.7-2.5+4.6
=1.2+4.6
=5.8
3.6×6+0.9
=21.6÷0.9
=24
(3)小结运算顺序
①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。
②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)
③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)
2.学习例2:35.6-5×1.73= 6.75+2.52÷1.2=
(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?
(2)学生计算后订正。
(3)小结。
以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?
讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
(4)练习:先说出运算顺序,再算出得数。
①P37“做一做”;②3.6÷1.2+0.5×5。
思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)
②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)
教师介绍:小括号“( )”是公元17世纪由荷兰人吉拉特首先使用。中括号“[ ]”是公元17世纪首次出现在英国的互里士的著作中。
小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)
3.试做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=
(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
(2)学生试做
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解
在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。
要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)
学生继续计算后,订正
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
≈2.12×5
=10.6
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
≈0.42
提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)
4.小结
(1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)
(2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)
(3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
三、巩固反馈
1.P38:做一做。
2.P40:1①②,2①②。
(1)说出运算顺序;
(2)计算并且验算;
(3)订正并小结验算方法。
验算方法:①原式验算;②互逆验算;③交换验算。
3.判断下面各题,哪些是对的,哪些是错的,并说明原因。
(1)0.8-0.8×0.7=0( );
(2)1.6+1.4×2=6( );
(3)50-3.9+6.1=40( );
(4)20÷2.5×4=32( );
(5)9.6+0.4-9.6+0.4=0( );
(6)4.8×2÷4.8×2=1( )。
4.P40:4。先计算填空,再列出综合算式。
5.课后作业:P40:1③④,2③④,3。
教学内容:
课本第39页例1、例2.
教学目标:
1、使学生理解第一级运算和第二级运算的含义。
2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。
3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。
4、培养学生认真严格的态度。
教学过程:
一、复习铺垫
(1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)
(2)填空回答。
①在一个算式里,如果只有()或者只有(),要从左往右依次计算。
②在一个算式里,如果有(),又有(),要先做()后做()。
(3)在一个算式里,如果有括号,要先算()。
二、新授
1、出示课题:整数、小数四则混合运算。
2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。
3、教学例1.
(1)板书例1:3.7-2.5+4.6 3.6×6÷0.9
然后设问
①这些算式里有哪些运算?
在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
②这两个算式的运算顺序怎样?
③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。
根据学生回答,改变复习填空①的叙述。
④再概括一点讲,这句话可以怎样叙述?
根据学生回答,改变复习填空①的叙述,出示教材结语。
(2)学生完成例1的计算。
4、教学例2.
(1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问
①算式里含有几级运算?
②运算顺序怎样?
根据学生回答,改变复习填空②的叙述,出示教材结语。
(2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)
(3)完成例2下面的“做一做”习题。
5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。
三、巩固练习。
1、(1)填空。(出示,学生口答)
①加、减、乘、除四则运算统称为()。
②加法和减法叫做第()级运算,乘法和除法叫做第()级运算。
③一个算式里,如果只含有同一级运算要从()计算;如果含有两级运算,要先做第()级运算,后做第()级运算;如果有两种括号,要先算()括号里面的,再算()括号里面的。
2、课本第39页做一做。
四、作业。
练习十第1、4题。
《数的世界》是一节数学概念课,即教学因数和倍数。在老教材中是先建立整除的概念,再在此基础上认识因数倍数;而现在是在未认识整除的情况下用乘法算式直接认识倍数和因数。数学中的“起始概念”一般比较难教,而这部分内容学生是初次接触,对于学生来说是比较难掌握的。根据本节课知识的特点和学生的认知规律,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。
由于这是节概念课,因此有不少东西是由老师告知的,比如因数和倍数的概念。在认识了各类数之后,我创设有效了数学学习情境,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式直接告知因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从具体到抽象,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念。
为了突破本课的难点,我通过变式拓展,实践应用,促进了学生的智能内化。在理解因数和倍数中,我认为有两个关键性的问题是学生比较容易混淆的,第一就是因数和倍数的范围(非零自然数),我是这样处理的:通过一组算式让学生说谁的谁的因数,谁是谁的倍数,如3×5=15 6×8=48 9×4=36 12×5=60等,学生越说越顺口,越说越有劲,我突然抛出了1.5×6=9这个算式,结果有同学陷入了沉思(我认为这些同学感觉到了与刚刚的哪些算式有点不一样),但也有同学还是举手这样答道:1.5和6是9的因数,9是1.5和6的倍数,话一说完,就见那些沉思的同学有几个高高举起了手,迫不及待的说:我们说研究因数和倍数是在非零的自然数范围里,可这里的1.5不是自然数,所以不可以说1.5和6是9的因数,9是1.5和6的倍数。我就趁热打铁,组织学生进行热烈的讨论,同学们统一了认识,真正认识到了因数和倍数的范围,从而为理解概念打好了坚实的基础。而第二个关键性的问题我认为就是因数和倍数的相互依存的关系,我采取了几个递进的环节进行处理:一开始我就直接告知,让学生鹦鹉学舌。如通过学生写的3×4=12 这个算式,我就说,这时3和4是12的因数,12是3和4的倍数。通过一些类似的乘法算式让学生试着说,很快学生就有了第一感性认识;接着我用一个游戏让学生理解因数和倍数的相互依存,我举了三个数字卡片,分别是3、6和12,让学生很快说出谁是谁的因数,谁是谁的倍数?为什么?学生很快找到了3是6和 12 的因数,6也是12 的因数;6和12都是3的倍数。我追问:那我说,6是因数,12是倍数可以吗?通过这个例子,学生认识到6相对于12是因数,而相对于3却是倍数;而12 相对于6才是倍数,它相对于其他的数就说不定了,通过这个环节,学生很容易就理解了相互依存的含义,更好的理解了概念的内涵;最后我让同坐两人一组,一人说任意一个自然数,另一个同学则找出它是谁的因数,谁的倍数?并说出判断的依据。由于答案不,学生思考问题的空间很大,培养了学生的发散思维能力。
本节课,学生都沉浸在自己的角色体验中,享受到了数学思维的快乐,我想这才算是真正的“有效教学”。