2022年新人教版五年级数学下册教案【10篇】

你知道怎么写2021年新人教版五年级数学下册教案吗?借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。一起看看2021年新人教版五年级数学下册教案!欢迎查阅!这次帅气的小编为您整理了2022年新人教版五年级数学下册教案【10篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

五年级下册数学教案 篇1

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

1.5dm3 =( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级下册数学教案 篇2

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

【教学目标】

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

一、复习导入

1、什么叫因数?

2、自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1、学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表

三、课堂作业

完成教材第16页练习四的第1~3题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

教学反思

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案 篇3

【教学内容】

教科书第1~2页的例1以及相关的练习。

【教学目标】

1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2?培养学生的分析能力和归纳概括能力。

3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

【教具准备】

多媒体课件和视频展示台。

【教学过程】

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1?教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

2?理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

3?说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1?第4页课堂活动第2题。

2?练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

(1)把一个月饼平均分成4份,其中的1份是这个月饼的();

(2)把一张手工纸

五年级下册数学教案 篇4

教案设计

设计说明

1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

2.在学生原有的认知水平上促进发展。

本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

课前准备

教师准备PPT课件

学生准备两张完全一样的方格纸

教学过程

⊙创设情境,导入新课

师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

(课件出示情境图)

师:“分数王国”里有哪些数呢?“小数王国”里呢?

(生汇报)

师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

生:和0.06都说自己更大。

师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

⊙自主探索,学习新知

1.解决问题。

(1)课件出示教材7页情境图。

师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

(2)大胆猜测,探究比较方法。

方法一 把分数化成小数来比较。

=1÷20=0.05,因为0.060.05,所以0.06。

方法二 把小数化成分数来比较。

0.06=,=,因为,所以0.06。

课件展示学生没有想到的画图法,让学生在讨论中理解。

0.06>

师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

(1)认真读题,明确题目中的“翻译”指什么。

(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

3.归纳分数化成小数的方法。

(1)探究将分数化成小数的方法。

把下列分数化成小数:

练习,并思考转化方法。

(2)小组内交流方法。

(3)班内反馈。

要求学生说出转化方法,并讲明转化的原理。

师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

4.归纳“小数化成分数”的方法。

把0.3,0.27,0.75,0.125化成分数。

练习,探究小数化成分数的方法。

师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案 篇5

教学内容:人教版小学五年级数学质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类。

2、培养学生细心观察全面概括。准确判断。自主探索、独立思考、合作交流的能力。

教学重点:能准确判断一个数是质数还是合数。

教学难点:找出100以内的质数。

教学过程:

一、复习导入(加深前面知识的理解,为新知作铺垫)

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数。

3和15 4和24 49和7 91和13

指名回答。

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1~20各数的因数。

1、观察各数因数的个数的特点。

2、板前填写师出示的表格。

只有一个因数

只有1和它本身两个因数

除了1和它本身还有别的因数

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?

5、探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

引导学生明确:1既不是质数也不是合数。

练习:自然数中除了质数就是合数吗?

三、给自然数分类。

1、想一想

师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?

生:质数,合数,1。

2、说一说。

既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

四、师生学习教材24页的例1。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

(特殊记忆20以内的质数,因为它常用。)

2、小组探究100以内的质数。

3、汇报100以内的质数。师生共同整理100以内的质数表。

4、应用100以内质数表:

练习:

(1)有的奇数都是质数吗?

(2)所有的偶数都是合数吗?

五、思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。

六、课堂小结。

这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)

反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。

在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。

五年级下册数学教案 篇6

教学目标:

1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3、学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

3、教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1、师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2、学生操作,教师巡视并特别提醒学生注意“平均分”。

3、展示学生的作业。

4、师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5、教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6、引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7、课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案 篇7

信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

一、引入:

1、出示:条形统计图

(1)某电影院上月各类影片观众人数统计图

(2)新芽书苑20xx年3月第一星期故事书销售情况统计图

2、提问:你已知道了条形统计图的哪些知识?

3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

(1) 上虞电影院20xx年(1~6)月观众人数统计图。

(2) 百官镇一农户96~20xx年人均收入统计图。

二、展开:

(一)折线统计图的特点和作用。

1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

(1) 学生自由讨论交流。

(2) 这两类统计图最大的区别是什么?

2、结合条形统计图的特点,归纳折线统计图的特点。

3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

4、结合课本进一步深入了解折线统计图的特点和作用。

(二)折线统计图的绘制。

1、你认为哪幅条形统计图用折线统计图来绘制更合适?

2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

3、学生尝试绘制。

(1) 出示“我们的调查资料”。

(2) 想一想,哪几组数据用折线统计图绘制比较合适?

(3) 请选择其中一组数据绘制。

(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

(5)大组交流绘制情况,并纠错。

三、应用

1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

2、出示:百官镇一农户96~20xx年人均收入统计图。

思考:A、看图后你有什么感受?

B、你能提出哪些数学问题?

3、对比练习:

(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

思考:A、两种鞋的销售趋势分别怎样?

B、你有什么建议?

(3) 出示:两家游泳衣专卖店的销售情况统计图。

思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

B、猜猜为什么乐乐专卖店会有这样的销售现象

四、总结

你又有什么新收获?你是用什么方法学会的?

五、课外作业

省略

五年级下册数学教案 篇8

教学目标:

1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

教学重点:

初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

教学难点:

通过探索,自主推算出相邻体积单位间的进率。

教学准备:

多媒体课件、体积单位模型、彩泥、魔方等。

教学过程:

一、创设情境,引发思考

师:上一节课,我们认识了体积,什么是物体的体积?

问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

二、合作学习,探究新知

(一)探寻学生已有知识:

问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂

(二)建立1cm3、1dm3、1m3的空间观念

1、建立1立方厘米的空间观念:

(1)初步感知1cm3有多大:

问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

<>>

(2)触类旁通,定义1 cm3的大小:

师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

(3)进一步感知1cm3的大小:

做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

(4)想一想,填一填:

师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

2、建立1立方分米、1立方米的空间观念:

(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

3、练习(用合适的体积单位表示下面物体):

一块橡皮的体积约是8( )。

一台录音机的体积约是10( )。

运货集装箱的体积约是40( )。

一本新华字典的体积约是0.4( )。

一个西瓜的体积约是5( )。

一间教室的体积约是180( )。

(三)继续类比,探究相邻体积单位间的进率:

1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见

2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

三、动手操作,质疑反思:(机动,也可作为课后拓展)

学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

1、用4个小正方体可以摆成一个大正方体吗?

2、最少要用多少个小正方体才可以摆成一个大正方体?

3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

四、总结全课,感悟学习方法

师:通过今天的学习,你有哪些新的收获?(生生互动)

小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级下册数学教案 篇9

教学目标:

1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

2、欣赏美丽的对称图形,并能自身设计图案。

3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。

重点难点:

1、能利用对称、平移、旋转等方法绘制精美的图案。

2、感受图形的内在美,培养同学的审美情趣。

教学准备:幻灯片、课件。

教学过程:

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让同学尽情发表自身的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、 交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、安排作业

教材第9页第5题。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

最新五年级下册数学教案 篇10

教学内容:

教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

教学目标要求:

1、使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

2、使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

教学重点:

理解“等式的两边同时加上或减去同一个数,所得结果仍然是等式”。

教学难点:

会用等式的这一性质解简单的方程。

教学过程:

一、教学例3

1、谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的天平图,你能根据图意写出一个等式吗?

提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?

谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

2、出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

3、出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

4、提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

5、做练一练的第1题

二、教学例4

1、出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

2、讲解:要求出方程中未知数的值,要先写“解”,要注意把等号对齐。

3、完成试一试

4、完成练一练

提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

三、巩固练习

1、 做练习一的第3题

2、做练习一的第4题

3、做练习一的第5题

四、全课小结

提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

五、作业

完成补充习题。

板书设计:

等式性质和解方程

等式的性质 解方程

50=50 50+10=50+10 解: X+10=50

x+a=50+a 50+a-a =50+a-a X-10=50-10

X=40

检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

一键复制全文保存为WORD
相关文章