它山之石可以攻玉,以下是漂亮的小编给大伙儿收集的勾股定理课件优秀8篇,欢迎阅读,希望对大家有所帮助。
教材分析:
这节课是九年制义务教育课程标准实验教科书(苏科版),八年级上册第三
章第一节“勾股定理”的第一课时、勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的重要性质,它把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,它是数形结合的典范,它可以解决许多直角三角形中的计算问题、学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解、
教学目标:
1、让学生经历从数到形再由形到数的转化过程,从探求三个正方形面积间的关系转化为三边数量关系的过程、培养学生主动探究意识,发展合理推理能力,体会数形结合思想、
2、能说出勾股定理,并能用勾股定理解决简单问题、
3、在经历数学知识的形成与应用过程中培养学生学习数学的兴趣;感受勾股定理的文化价值、
教学重点:
探索勾股定理的过程,会利用两边长求直角三角形的另一边长、
教学难点:
用割、补法求面积探索勾股定理、
教学方法与教学手段:
采用探究发现式教学,提供适当的问题情境、给学生自主探究交流的空间,引导学生有方向地探索、
教学过程:
(一)创设情境 提出问题
1、同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你能确定第三边的长吗?你能确定第三边的长的范围吗?
2、如果这两边所夹的角确定了,那么第三边的长确定吗?第三边的长是多少?
3、直角三角形两边长确定了,第三边的长确定吗?如何求第三边的长呢?这节课就让我们一起来探讨这个问题、板书:直角三角形三边数量关系、
(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生的原有认知出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标、当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究)
(二)实践探索 猜想归纳
1、(几何画板出示),观察图形,我们以直角三角形ABC三边为边向形外作三个正方形、若将图形①②③④⑤剪下,用它们可以拼一个与正方形ABDE大小一样的正方形吗?
(同桌同学合作拼图)通过拼图,你有什么发现?
(以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积)
(拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力,体现了活动——数学)
2、拼图活动引发我们的灵感,运算推演证实我们的猜想、为了计算面积方便,我们可将这幅图形放在方格纸中、如果每一个小方格的边长记作“1”,请你求出此时三个正方形的面积(SP=9,SQ=16)
你是如何得到的?(可以数,也可以通过正方形面积公式计算得到)
如何求SR?(SR的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示)
学生可能提出割、补、平移、旋转四种方法
(旋转这种方法只适用于斜边为整数的情况,没有一般性,而且此时斜边的长还不能求出来。若有学生提出,应提醒学生)
肯定学生的研究成果,进而让学生打开书回顾课本上的提示、从小明、小丽的方法中你能得到什么启发?
(把图形进行“割”和“补“,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形、这种思想方法,称为化归思想)
3、变化直角三角形,仿照以上方法计算直角边为5和3的直角三角形中以斜边为边的正方形面积
(这是“割”和“补”思想的再一次应用、让学生感受所学即所用,体验成功的乐趣)
4、通过计算,你发现这三个正方形面积间有什么关系吗?
(SP+SQ=SR,要给学生留有思考时间)
5、利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积间也有如上关系吗?
将网格线去掉,利用几何画板中的度量工具可以看到SP+SQ=SR
(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多一般的情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻)
6、我们这节课是探索直角三角形三边数量关系、至此,你对直角三角形三边的数量关系有什么发现?
(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于斜边的平方)
(这一问题的结论是本节课的点睛之笔,应充分让学生总结、交流、表达)
7、用弯曲的手臂形象地表示勾、股、弦的概念,再给出勾股定理,进而给出字母表达式、一段紧张的探索过程之后,播放一段有关勾股历史的录音
(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感)
(三)学以致用 体验成功
1、完成课本第79-80页练习1、2
(1)求下列直角三角形中未知边的长:
(2)求下列图中未知数x、y、z的值:
在学生回答的基础上,老师规范板书一题、
(在对勾股定理基本应用的基础上,让学生体会知道直角三角形三边中的任意两边,可以求第三边)
(四)课堂小结
学生可以谈本节课的收获,也可以提出本节课的疑问、教师引导学生思考特殊的三角形直角三角形三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?这是我们今后将要探讨的内容、
(学生总结本堂课的收获,从内容、应用,到数学思想方法,获取知识的途径等方面,给学生自由的空间,鼓励学生多说、这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力、最后提及的问题与引入首尾呼应,激发了学生深入研究的兴趣)
(五)布置作业
P82习题3.1第1、2题
教学目标 :
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用
教学难点 :通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程 :
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来.
勾股定理:直角三角形两直角边 的平方和等于斜边 的'平方
强调说明:
(1)勾DD最短的边、股DD较长的直角边、弦DD斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明
4、定理与逆定理的应用
例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C
又
∴
∴CD的长是2.4cm
例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,
求证:
证法一:过点A作AE⊥BC于E
则在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
证法二:过点D作DE⊥AB于E, DF⊥AC于F
则DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 设
求证:
证明:构造一个边长 的矩形ABCD,如图
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3
图3中,在Rt△DGF中
同理
∴图3中的路线长为
图4中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH= 及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
∵3>2.828>2.732
∴图4的连接线路最短,即图4的架设方案最省电线.
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业 :
a、书面作业 P130#1、2、3
b、上交作业 P132#1、3
板书设计 :
探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
解:(1)由点A作AD⊥BC于D,
则AD就为城市A距台风中心的最短距离
在Rt△ABD中,∠B= ,AB=220
∴
由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.
故该城市会受到这次台风的影响.
(2)由题意知,当A点距台风中心不超过60千米时,
将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,
该城市都会受到这次台风的影响
一、教材分析
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程。
2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
3、解决问题:①通过拼图活动,体验数学思维的严谨性,发展形象思维。
②在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。
4、情感态度:①通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习。
②在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
(三)本课的教学重点:探索和证明勾股定理
本课的教学难点:用拼图的方法证明勾股定理
二、教法与学法分析:
教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
(一)提出问题:
首先提出问题1:你知道下图所表示的意义吗?创设问题情境,20xx年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的奥运会,这就是本届大会会徽的图案,你听说过勾股定理吗?通过提出问题,从而激发学生的求知欲。
其次提出问题2:你知道勾三、股四、弦五的意义吗?此问题由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生的学习兴趣,激发学生的求知欲。
∴EF=2DE=
因为这次台风中心以15千米/时的速度移动
所以这次台风影响该城市的持续时间为 小时
(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级.
一、教学内容分析
这节课是人教版九年义务教育课程标准实验教材八年级第十八章勾股定理第一课时,是在前面学习了直角三角形一些性质的基础上学习的。它是几何的重要定理之一,它揭示了直角三角形三边的数量关系,它将形与数密切联系起来,在数学的发展中起着非常重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,对直角三角形有进一步的认识和理解,为今后学习解直角三角形打下基础。
二、教学目标
【知识与技能目标】
能说出勾股定理的内容,并能进行简单的计算和实际应用。
【能力与方法目标】
经历探索—猜想—归纳—验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
【情感与态度目标】
1、使学生了解勾股定理的历史,感受数学文化,激发学生的学习热情和民族自豪感;
2、在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
三、教学重点与难点
【教学重点】
1、探索和证明勾股定理;2、运用勾股定理进行简单的计算。
【教学难点】
利用拼图的方法验证勾股定理、
四、教学准备
①自制学习卡;
②自制教学工具:四个全等的直角三角板(两直角边分别为 ,斜边为 )、一块模板(将一块矩形板材中间挖出一个边长为 的正方形,再将其背面衬一块底板)。
五、教学过程设计
(一)创设情境,引入课题
问题1:在七年级我们学习了三角形的有关知识,如果已知一个三角形的两条边长分别为3和4,第三边的长度确定吗?
问题2:如果这两边的夹角为90°,第三边的长度确定吗?如何求第三边的长度呢?
问题呈现后给学生适当思考时间,然后揭示课题:这一节课我们一起来研究直角三角形这一类特殊三角形中三边的数量关系——勾股定理。
设计意图:从数学问题出发,激活原有知识(三角形的任意两边之和大于第三边,任意两边之差小于第三边),将学生的原有认知作为新知的生长点,自然地引出本节课要探究的问题。
(二)实践探索,猜想结论
活动1(学习卡):(1)请你用三角板画出一个直角三角形(为减小误差,把直角边取为整数)
(2)量出这个三角形三边的长度为(斜边精确到0.1㎝)
(3)算出三边长度数的平方为
你发现这些数据之间有什么关系吗?
(4)你能猜想直角三角形的三边的平方在数量上有什么关系吗?
设计意图:①此活动采取小组合作的方式,互相交流,共同分享,培养学生的分工和合作交流的意识;②通过让学生动手操作,自主探究直角三角形三边的数量关系,激发学生的学习热情,增进数学学习的信心,同时发展合情推理的能力,体会由特殊到一般的数学思想。
(三)动手验证,形成定理
活动2:(1)你能用所给的四个全等的直角三角形在正方形模板中拼出两个空白的正方形吗?
(2)你能用所给的四个全等的直角三角形在正方形模板中拼出一个空白的大正方形吗?
问题3:以上拼出的两个图形的空白部分面积分别是多少?它们相等吗?
由此我们可以得到一个什么关系式?
设计说明:①通过拼图活动,以动手操作代替枯燥、单一的讲解,把学习的主动权交给学生。在活动中,让学生体会到成功的喜悦,进一步激发学生的学习热情,使学生对定理的理解更加深刻,体会数学中的数形结合思想;②此活动过程是在毕达哥拉斯的'证法的基础上加以改造,使拼图方法和定理的演绎推理过程得以简化,有效地突破了定理的证明这一难点。
(四)介绍历史,激发热情
1、介绍定理命名的含义:在中国古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”。
2、在西方一般认为这个定理是由古希腊数学家毕达哥拉斯发现的,所以人们称这个定理为“毕达哥拉斯”定理。而实际上据我国著名《周髀算经》记载:约公元1千多年前,我国就已经发现了勾股定理。这比毕达哥拉斯的发现要早了几百年。
3、世界上许多数学家,先后用400多种方法证明了这一定理。同学们在课后可以通过查阅资料或上网了解勾股定理的其它证法。
设计意图:通过介绍勾股定理的历史背景,感受数学文化,增加学生的数学史知识,从而体会到祖国数学历史的悠久,对学生进行爱国主义教育,增强民族自豪感。
(五)应用定理,解决问题(学习卡)
【例题讲解】已知在Rt△ABC中,∠C=90°,
AB=10,BC=6,求AC的长度
设计意图:给出范例,让学生了解用勾股定理进行计算的过程性要求,规范解题步骤,培养学生有条理地表达的能力。
设计意图:采用合作探究的教学方式组织教学。在这个探究过程中,要求学生在独立思考的基础上进行合作交流,然后小组汇报,让学生经历和体验如何将生活实际问题抽象成数学问题进而得以解决,激发学生应用数学的意识和能力。
【能力提升】
7、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
设计意图:①进一步熟悉和掌握勾股定理,培养学生从实际问题中抽象出几何模型的能力;②学会建立方程解决几何问题,体会数形结合思想的运用,拓展学生综合运用知识的能力,激发学生的学习潜能。
(六)课堂小结,归纳提升
通过本节课的学习你有哪些收获?
设计意图:通过小结为学生创设交流、反思的空间,调动学生的积极性,既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
(七)布置作业,课后延伸
1、巩固型作业(略);
2、通过翻阅资料或上网查找有关证明勾股定理的方法,选择你喜欢的两种方法整理并打印出来(两天内在组内交互,一周内小组交互,选择不同的证明方法在班级展出)。
设计意图:这个作业活动是开放的,它不仅为每个学生搭建了进一步探索和思考数学活动的平台,而且给了他们施展自我才能的舞台,有助于学生综合素质的全面发展。
1、发展历程
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前11)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的'三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
2、主要意义
1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数“与有理数的差别,这就是所谓第一次数学危机。
3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。
初中勾股定理课件
初中勾股定理课件已经为大家准备好啦,老师们,大家可以参考以下内容,准备好教学思路哦!
一、内容和内容解析
本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。
勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。
学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。
本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容教学难点:勾股定理的论证
二、教学目标及目标解析
1、教学目标
①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。
②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
2、目标解析
①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。
②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。
③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。
④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的。伟大从中得到良好的思想的熏陶。
三、教学问题诊断分析
学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。
对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。
四、教学支持条件分析
根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.
五、教学过程设计
(一)创设情境,导入新课。
问题1:请同学们欣赏20国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)
教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。
【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.
问题2:教师板书课题,介绍直角三角形各边的名称。提问:你知道哪些勾股定理的知识?
视学生回答情况确定下步的教学
方案1:如果学生能够说出勾股定理的相关知识,则直接
进入下一环节的学习。
方案2:如果学生有困难,则安排学生自学教材,再发表意见。
学生发言,教师倾听。视学生回答的重点板书:勾三股四弦五等
【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。
(二)观察演算,合作探究,初具概念
问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系?(故事附后)
教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。
【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。
问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。
教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)
【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。
(三)引导实验,探究论证,形成体系。
问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。
教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。
【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。
问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放画出图形并用面积法进行论证。
学生或小组间进行合作实验,共同协作探究;教师巡视指导。
【设计意图】学生自主探究,再次理解勾股定理,学会面积证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。
问题9:教师选取代表性的拼接方法,全班展示。
【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。
(四)归纳提高,巩固运用,形成能力。
问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?
学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。
【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。
问题11:完成以下练习题
教材69页第1题、
学生独立完成;教师巡视指导,板书得数,介绍勾股数。
【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。
(五)归纳小结,反思提高
问题12:通过本节课的学习,你有哪些收获?
学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。
【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。
布置作业.教材70页2、8题。
六、目标检测设计
1.在等边三角形中边长为10,则该三角形的面积是多少?
【设计意图】综合题,考查等边三角形的三线合一、30度角所对的直角边等于斜边的一半、勾股定理、三角形面积知识;培养学生的转化意识。
2.在一个直角三角形中两边的长为3、4,则第三条边长度是多少?
【设计意图】分类讨论。考查直角三角形的斜边最长及勾股定理。
3、湖中直立一荷花,花朵高水1m整,忽然一阵风吹来,荷花吹离2m处,斜于水面齐,问湖水几许深?
【设计意图】诗情画意的情景呈现数学问题增强美的感受,在愉悦、放松的氛围中感受数学在生活中的作用,体验数学是一门基础学科,增强学好学生的决心。培养学生的数学建模意识,提高解决问题的能力。
教学目标 :
1、知识目标:
(1)掌握;
(2)学会利用进行计算、证明与作图;
(3)了解有关的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关的历史讲解,对学生进行德育教育.
教学重点:及其应用
教学难点 :通过有关的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程 :
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来.
:直角三角形两直角边 的平方和等于斜边 的平方
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明
4、定理与逆定理的应用
例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。
解:∵△ABC是直角三角形,AB=5,BC=3,由有
∴ ∠2=∠C
又
∴
∴CD的长是2.4cm
例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,
求证:
证法一:过点A作AE⊥BC于E
则在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
证法二:过点D作DE⊥AB于E, DF⊥AC于F
则DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 设
求证:
证明:构造一个边长 的矩形ABCD,如图
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3
图3中,在Rt△DGF中
同理
∴图3中的路线长为
图4中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH= 及得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
∵3>2.828>2.732
∴图4的连接线路最短,即图4的架设方案最省电线.
5、课堂小结:
(1)的内容
(2)的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业 :
a、书面作业 P130#1、2、3
b、上交作业 P132#1、3
板书设计 :探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
解:(1)由点A作AD⊥BC于D,
则AD就为城市A距台风中心的最短距离
在Rt△ABD中,∠B=,AB=220
∴
由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.
故该城市会受到这次台风的影响.
(2)由题意知,当A点距台风中心不超过60千米时,
将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,
该城市都会受到这次台风的影响
由得
∴EF=2DE=
因为这次台风中心以15千米/时的速度移动
所以这次台风影响该城市的持续时间为 小时
(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级.