初中数学教学设计【优秀9篇】

作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?这里是整理的初中数学教学设计【优秀9篇】,希望可以启发、帮助到大家。

初中数学教学设计 篇1

一、案例实施背景

本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计

本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识与技能:

掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:

在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:

通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点

1、重点:

正确运用科学记数法表示较大的数

2、难点:

正确掌握10的幂指数特征,将科学记数法表示的数写成原数

五、案例教学用具

1、教具:多媒体平台及多媒体课件、图片

六、案例教学过程

一、创设情境,兴趣导学:

1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

2、展示课本第63页图片,现实中,我们会遇到一些比较

大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

生1:答:13.7亿,640万,3亿。

师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。

分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

二、尝试探索,讲授新课:

1、探索10n的特征

计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

(观察并思考,小组讨论)

(1)结果中“0”的个数与10的指数有什么关系?

(2)结果的位数与10的指数有什么关系?

2、练习:将下列个数写成只有一位整数乘以10n的形式。

(1)500(2)3000(4)40000

师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。

3、分析:

通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

4、科学记数法:

像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

(思考,小组讨论)

10的指数与结果的位数有什么关系?

分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

三、巩固新知,知识运用:

将下列各数写成科学记数法形式。

(1)23 000 000

(2)453 000 000

(3)13 400 000 000 000 000米

用科学记数法表示是多少米?

分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

(观察并思考,小组讨论)

如何将一个用科学记数法表示的数写成原数?

a×10n将a的小数点向右移动n位原数

分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

七、教学反思

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

初中数学教学设计模板 篇2

一。一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

(1)组成不等式组的不等式必须是一元一次不等式;

(2)从数量上看,不等式的个数必须是两个或两个以上;

(3)每个不等式在不等式组中的位置并不固定,它们是并列的。

二。一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:

(1)先分别求出不等式组中各个不等式的解集;

(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集。

三。不等式(组)的解集的数轴表示:

一元一次不等式组知识点

1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

2、不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;

3、。我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

四。求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

【一元一次不等式组考点分析】

(1)考查不等式组的概念;

(2)考查一元一次不等式组的解集,以及在数轴上的表示;

(3)考查不等式组的特解问题;

(4)确定字母的取值。

【一元一次不等式组知识点误区】

(1)思维误区,不等式与等式混淆;

(2)不能正确地确定出不等式组解集的公共部分;

(3)在数轴上表示不等式组解集时,混淆界点的表示方法;

(4)考虑不周,漏掉隐含条件;

(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;

(6)对含字母的不等式,没有对字母取值进行分类讨论。

初中数学教学教案 篇3

教学目标

知识技能

1.通过观察实验,使学生理解圆的对称性。

2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题。

过程方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴。

2.经历探索垂径定理及其推论的过程,进一步和理解研究几何图形的各种方法。

情感态度

激发学生观察、探究、发现数学问题的兴趣和欲望。

教学重点

垂径定理及其运用。

教学难点

发现并证明垂径定理

教学过程设计

教学程序及教学内容师生行为设计意图

一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径的研究开始来研究圆的性质。

二、探究新知

(一)圆的对称性

沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?

得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

(二)垂径定理

完成课本思考

分析:1.如何说明图24.1-7是轴对称图形?

2.你能用不同方法说明图中的线段相等,弧相等吗?

垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

即:直径CD垂直于弦AB则CD平分弦AB,并且平分弦AB所对的两条弧。

推理验证:可以连结OA、OB,证其与AE、BE构成的两个全等三角形,进一步得到不同的等量关系。

分析:垂径定理是由哪几个已知条件得到哪几条结论?

即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧。

垂径定理推论

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

思考:1.这条推论是由哪几个已知条件得到哪几条结论?

2.为什么要求“弦不是直径”?否则会出现什么情况?

垂径定理的进一步推广

思考:类似推论的结论还有吗?若有,有几个?分别用语言叙述出来。

归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧。”中的两个条件,就可以得到另外三个结论。

(三)、垂径定理、推论的应用

完成课本赵州桥问题

分析:1.根据桥的实物图画出的几何图形应是怎样的?

2.结合所画图形思考:圆的半径r、弦心距d、弦长a,弓形高h有怎样的数量关系?

3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r、弦心距d、弦长a的一半之间的关系式:

三、课堂训练

完成课本88页练习

补充:

1.如图,一条公路的转弯处是一段圆弧,点O是圆心,其中CD=600m,E为圆O上一点,OE⊥CD,垂足为F,EF=90m,求这段弯路的半径。

2.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由。(当水面距拱顶3米以内时需要采取紧急措施)

四、小结归纳

1. 垂径定理和推论及它们的应用

2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题。

3.圆中常作辅助线:半径、过圆心的弦的垂线段

五、作业设计

作业:课本94页 1,95页 9,12

补充:已知:在半径为5?的⊙O中,两条平行弦AB,CD分别长8?,6?.求两条平行弦间的距离。教师从直径引出课题,引起学生思考

学生用纸剪一个圆,按教师要求操作,观察,思考,交流,尝试发现结论。

学生观察图形,结合圆的对称性和相关知识进行思考,尝试得出垂径定理,并从不同角度加以解释。再进行严格的几何证明。

师生分析,进一步理解定理,析出定理的题设和结论。

教师引导学生类比定理独立用类似的方法进行探究,得到推论

学生根据问题进行思考,更好的理解定理和推论,并弄明白它们的区别与联系

学生审题,尝试自己画图,理清题中的数量关系,并思考解决方法,由本节课知识想到作辅助线办法

教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,方法,规律。

引导学生分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.

让学生尝试归纳,,发言,体会,反思,教师点评汇总

通过学生亲自动手操作发现圆的对称性,为后续探究打下基础

通过该问题引起学生思考,进行探究,发现垂径定理,初步感知培养学生的分析能力,解题能力。

为继续探究其推论奠定基础

培养学生解决问题的意识和能力

全面的理解和掌握垂径定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识。

体会转化思想,化未知为已知,从而解决本题,同时把握一类题型的解题方法,作辅助线方法。

运用所学知识进行应用,巩固知识,形成做题技巧

让学生通过练习进一步理解,培养学生的应用意识和能力

归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

巩固深化提高

板 书 设 计

课题

垂径定理垂径定理的进一步推广

赵州桥问题归纳

初中数学教学教案 篇4

目标

1.联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。

2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。

重点难点

理解轴对称图形的基本特征

教具

准备 剪刀、纸(含平行四边形、字母N S)、教学挂图、直尺

教学方法

手段 观察、比较、讨论、动手操作

教学过程

一。新课

1.教师取一个门框上固定门的铰连让学生观察是不是左右对称?

2.出示教学挂图:天安门、飞机、奖杯的实物图片

将实物图片进一步抽象为平面图形,对折以后问学生发现了什么?

生:对折后两边能完全重合。

师;对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

教师先示范,让学生认识天安门城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。

3.练习题:(出示小黑板)

(1)P57“试一试”

判断哪几个图形是轴对称图形?试着画出对称轴。

估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。

(2)用剪刀和纸剪一个轴对称图形。

教学

过程 二。练习

1.出示挂图:(p58“想想做做”第1题)

判断哪些图形是轴对称图形?

生:竖琴图、轿车图、五角星图、铁锚图、科技标志图、中国农业银行标志图

师:钥匙图和紫荆花图为什么不是?

生:因为对折以后两部分没有完全重合。

2.看书p58“想想做做”第2题

判断哪些英文字母是轴对称图形?

生:A、C、T、M、X(有可能有的学生没有选C,还有可能有的学生选N、S、Z)

师:没有选C的同学除了竖着对折,看看横着、斜着对折你有没有去试一试?认为N、S、Z是轴对称图形的我请两个学生到讲台前用表示字母N、S的纸对折一下,看看对折以后两部分有没有完全重合?

学生试完以后会发现两部分没有完全重合。

教师再将字母N横过来就变成了字母Z,同样道理,两部分也不会完全重合。

初中数学教学设计 篇5

课题:

12.3等腰三角形

教学内容:

新人教版八年级上册十二章第三节等腰三角形

设计理念:

教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。

㈠教材的地位和作用分析

等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。

㈡教学内容的分析

本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。

在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。

在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自己的数学思维和能力,发展学生应用数学的意识。

二、目标及其解析

㈠教学目标:

知识技能:

1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;

3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。

数学思考:

1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;

2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力、

解决问题:

1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;

2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性、

情感态度:

1、经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;

2、经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;

3、在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益、

㈡教学重点:

等腰三角形的性质及应用。

㈢教学难点:

等腰三角形性质的证明。

㈣解析

本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:

1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:

⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边

⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;

2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;

3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。

三、问题诊断分析

1、在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。

2、这堂课学生可能遇到的第二个问题是证明等腰三角形的性质

这一问题主要有三个原因:

第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;

第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;

第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。

3、这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

四、教法、学法:

教法:

常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。

因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。

本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。

学法:

学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。

让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。

五、教学支持条件分析

在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。

数学初中教学设计 篇6

教学目标

1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3、通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点

1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点:利用数形结合的方法验证公式

教学方法:动手操作,合作探究课型新授课教具投影仪

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

初中数学教学设计 篇7

一。教学目标

1.知识与技能

(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法

(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观

(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二。教学重点与难点

教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

三。教学方法与教学手段

问题教学法、合作学习法,结合多媒体课件

四。教学过程

角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。

(一)问题提出

如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

【问题1】求390°角的正弦、余弦值。 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°) = sinα,

cos(a+k·360°) = cosα, (k∈Z) tan(a+k·360°) = tanα。

这组公式用弧度制可以表示成sin(a+2kπ) = sinα, cos(a+2kπ) = cosα, (k∈Z) (公式一) tan(a+2kπ) = tanα。

(二)尝试推导

如何利用对称推导出角π-a与角a的三角函数之间的关系。

由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:

【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?

角π-a与角a的终边关于y轴对称,有 sin(π-a) = sina,

cos(π-a) =-cosa,(公式二) tan(π-a) =-tana。

〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的? 因为与角a终边关于y轴对称是角π-a,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

(三)自主探究

如何利用对称推导出π+a,-a与a的三角函数值之间的关系。

刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?

【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?

角-a与角a的终边关于x轴对称,有: sin(-a) =-sina, cos(-a) = cosa,(公式三) tan(-a) =-tana。

角π+a与角a终边关于原点O对称,有: sin(π +a) =-sina,

cos(π +a) =-cosa,(公式四) tan(π +a) = tana。

上面的公式一~四都称为三角函数的诱导公式。

(四)简单应用

例求下列各三角函数值:

(1) sinp;

(2) cos(-60°);

(3)tan(-855°)

(五)回顾反思

【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?

知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:

(六)分层作业

1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;

2、必做题 课本23页13 3、选做题

(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?

(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?

初中数学教学设计 篇8

摘 要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。

关键词:相切;环节说明;分层体现;

一、案例背景介绍

(一)教学环境

在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。

(二)学生情况

我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。

(三)教材情况

本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。

二、案例内容设计及说明

环节一:复习引入

通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切

环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。

环节二:新知探究

活动

1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。

环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。

活动

2、将判定的题设和结论互换后的探究。

环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。

环节三:巩固和应用

通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。

环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。

环节四:课堂小结

在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。

环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。

环节五:拓展练习

通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。

环节六:作业布置

通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。

环节说明:作业

1、重点面向学困生考察其掌握基础的程度。作业

2、针对待优生夯实基础的基础上,提高其运用能力。作业

3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。

三、案例分析与反思

实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。

初中数学教学设计 篇9

教学目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素;

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;

3、能熟练找出两个全等三角形的对应角、对应边、

教学重点

全等三角形的性质、

教学难点

找全等三角形的对应边、对应角、

教学过程

一、提出问题,创设情境

1、问题:你能发现这两个三角形有什么美妙的关系吗?

这两个三角形是完全重合的

2、学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样、

3、获取概念

让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号、

形状与大小都完全相同的两个图形就是全等形、

要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同、

概括全等形的准确定义:能够完全重合的两个图形叫做全等形、请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义、仔细阅读课本中"全等"符号表示的要求、

二、导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED、

议一议:各图中的两个三角形全等吗?

不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED、

(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略、

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

得到全等三角形的性质:全等三角形的对应边相等、全等三角形的对应角相等、

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角、

问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

将△OCA翻折可以使△OCA与△OBD重合、因为C和B、A和D是对应顶点,所以C和B重合,A和D重合、

∠C=∠B;∠A=∠D;∠AOC=∠DOB、AC=DB;OA=OD;OC=OB、

总结:两个全等的三角形经过一定的转换可以重合、一般是平移、翻转、旋转的方法、

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角、

分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来、

根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素、常用方法有:

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边、

(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角、

解:对应角为∠BAE和∠CAD、

对应边为AB与AC、AE与AD、BE与CD、

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角、(由学生讨论完成)

借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边、而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了、再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角、所以说对应边为AB与AD、AC与AE、BC与DE、对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED、

做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合、这时就可找到对应边为:AB与AD、AC与AE、BC与DE、对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED、

三、课堂练习

课本练习1

四、课时小结

通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素、这也是这节课大家要重点掌握的

找对应元素的常用方法有两种:

(一)从运动角度看

1、翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素、

2、旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素、

3、平移法:沿某一方向推移使两三角形重合来找对应元素、

(二)根据位置元素来推理

1、全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边、

2、全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角、

五、作业

课本习题1

课后作业:《新课堂》

一键复制全文保存为WORD
相关文章