作为一位优秀的人民教师,总归要编写教案,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?
教学目标:
1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。
2、培养学生认真审题,独立思考的学习习惯。
3、训练学生分析、解题问题的能力。
教学过程:
一、书上第44页上的第12题
1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。
从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。
2、书上第44页上的第13题
引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。
二、说说分数的意义,并把数量关系补充完整
(1)今年的产量比去年增产1/8。
×1/8=
(2)钢笔枝数的2/5相当于圆珠笔的枝数。
×2/5=
(3)花布的米数比白布长1/4。
×1/4=
(4)实际每月比计划节约了1/10。
×1/10=
(引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)
二、对比练习。
1、有两块布,白布长15米,花布是白布的。1/3,花布有多少米?
2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?
3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?
(1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?
(2)比较3题有何异相点?
三、综合练习。
1、一种商品原价是250元,现价是原价的4/5,现价是多少?
2、一种商品原价是250元,后来降价了1/5,降价多少?
3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。
(1)两天分别修了多少米?
(2)第二天比第一天多修多少米?
(3)还剩多少米没修?
四、总结。
课后反思:
由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。
继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。
教学内容:教科书第20页例2。
教学目标:
1、加深对解决求一个数的几分之几是多少的问题思路与计算方法的理解,使学生学会解答稍复杂的求一个数的几分之几是多少的问题。
2、发展学生分析推理能力和解决实际问题的能力。
教学过程
播放公路上往来不断的车辆及噪杂的声音。
师:噪音对人的健康有害,绿化造林可以降低噪音。
出示画面(如教材第20页情境图)请学生说说对图意的理解。
师:从图中我们知道了公路上车辆的声音是80分贝,经过绿化带的隔离,噪音降低了1/8。根据这些条件,你能提出什么问题?
学生提问题,教师板书。(噪音降低了多少?绿化带这边听到的声音是多少分贝?)
师:我们来解决第一个问题:噪音降低了多少?谁能把问题完整地叙述出来。
生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,噪音降低了多少?
出示线段图
请学生把条件与问题在线段上表示出来(如下图)。
提问:把谁看作单位“1”?然后让学生独立解答。
师:现在我们解决第二个问题。谁能把问题完整地叙述出来?
生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,现在听到的声音是多少分贝?
师:线段图上哪一段表示“现在听到的声音有多少分贝”?
把线段图补充完整。
小组讨论探讨解决方法。
汇报交流方法。
第一种方法:先求出降低了多少分贝?再用原来的分贝数减去降低的分贝数。
列式80-80×(1/8)=70(分贝)
第二种方法:先求出现在听到的分贝数是原来分贝数的几分之几?再求出现在听到的'声音有多少分贝?
列式
提问:1-1/8表示什么?在线段图上表示出来。
师:比较这两种方法有什么不同?
学生讨论交流。明确两种方法都是把原来声音的80分贝看作单位“1”,都需要求80分贝的几分之几。但是第一种方法是根据已知条件先求出80分贝的1/8是多少,即降低了多少分贝,再求出现在听到的声音的分贝数。第二种方法是根据问题找到现在听到的分贝数占原来声音80分贝的几分之几,再根据分数乘法的意义求出现在听到的声音是多少分贝。
教学目标:
1.让学生掌握分数乘小数的计算方法,提高学生根据实际情况灵活选择合适的计算方法的能力。
2.在学生自主探索的基础上,引导学生自由地表达自己的想法,培养学生合作交流的能力。
3.通过解决日常生活中的实际问题,让学生体验数学的意义和价值。
教学重点:
掌握分数乘小数的计算方法。
教学难点:
提高学生根据实际情况灵活选择合适的计算方法的能力。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1.计算下面各题
2.通过计算引导学生回忆分数乘整数和分数乘分数的计算方法,并强调能约分的先约分再计算会更简便。(让学生自由回答,教师加以引导与整理。)
3.导语:前几节课我们学习了分数乘整数和分数乘分数的计算方法,今天,我们继续学习分数乘法的有关知识。
【设计意图:通过复习分数乘整数和分数乘分数的计算方法,激活学生的学习经验与学习技能,为学习分数乘小数埋下伏笔。同时,简明扼要地导入新课,让学生迅速地进入学习状态。】
二、自主学习(自主学习,生成问题)
(一)阅读理解
1.出示呈现例5情境图(数学信息),从图中你得到了哪些数学信息?根据这些数学信息你想解决什么数学问题?(学生自主提出问题,教师选择问题板书。)
(1)松鼠欢欢的尾巴有多长?
(2)松鼠乐乐的尾巴有多长?
【设计意图:由孩子们喜欢的小动物的知识引出例5,激发了学生学习的'兴趣。了解题目中有哪些数学信息是解决问题的第一步,可以帮助学生更好地解决数学问题。】
1.自主解答
松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书:,学生尝试计算,教师巡视,请不同做法的学生板演。)
2.交流探讨,体会不同算法
先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。
(1)可以把2.1化成分数,再跟相乘,结果是,化成带分数。
(dm)
(2)可以把化成小数0.75,再跟2.1相乘,结果是1.575。
2.1×=2.1×0.75=1.575(dm)
【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至 】
3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。
【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】
三、合作探究(小组合作,解决问题)
1.自主解答
刚才例5第(1)题大家完成得很不错,下面第(2)题有没有信心做对呢?(出示课件,学生尝试独立解答。)
2.交流反馈
(1)可以把2.4化成分数,再跟相乘,结果是__________(dm)
(2)可以把化成小数0.75,再跟2.4相乘,结果是1.8。
2.4×=2.4×0.75=1.8(dm)
3.自学课本
(1)除了上面两种计算方法,这道题还有另一种算法。同学们打开课本第8页,看一看,有没有不明白的地方?(学生看书自学。)
(2)这种算法你看懂了吗?引导学生说计算过程。(课件逐步出示第三种算法。)
小数2.4和分数的分母先约分得到0.6,0.6再跟分子3相乘,结果是1.8。
4.对比思考。
为什么可以这样约分?你觉得这样约分计算简便吗?
【设计意图:让学生独立完例5第(2)题,既复习了分数乘小数的两种计算方法,起到巩固练习的作用,又通过自主阅读教材学习先约分再计算的方法,不仅可以让学生准确掌握计算方法,更使学生深刻地体会到分数乘小数先约分再乘比较简便。】
四、回顾反思
1.既然先约分再计算这种方法这么简便,为什么第(1)题没用这种简便方法计算呢?
2.师小结:先约分再计算虽然简便,但只在小数与分数分母有共同因数的情况下适用,如果小数与分数分母没有共同的因数,就不能直接约分,只能采用把小数化成分数或把分数化成小数再计算的方法。所以在实际计算过程中,我们要特别注意观察算式中小数与分数分母的特征,明确小数与分数分母是否有共同的因数,然后再选择合适的算法进行计算。
【设计意图:在这个环节中,通过思考“为什么第(1)题没用这种简便方法计算呢?”,让学生体会到先约分再计算的局限性,从而引导学生在解决问题的过程中灵活选择合适的算法。】
五、拓展总结(应用拓展,盘点收获)
(一)对比练习
1.学生独立完成。
2.反馈:计算时你更喜欢哪种算法?
【设计意图:在前面学习分数乘整数的过程中,学生已经充分感受了先约分再计算的简便性,在这个练习中,学生会进一步感受到这种算法不仅在分数乘整数中可以让计算更简便,在分数乘小数中同样适用,培养学生简便计算的意识。】
(二)基本练习
教材第8页做一做
1.学生先观察每一道题的特征,思考:每道题可以用几种方法来做?哪种方法更简便?然后选择合适的方法进行计算。
2.反馈交流时提问:哪几题可以先约分再计算?可以把分数化成小数计算吗?
【设计意图:这个环节通过四道题的对比练习,让学生发现不仅先约分再计算有局限性,分数化小数这种算法也有一定的局限性。在引导学生比较各种方法的优缺点的同时,进一步感受计算方法的灵活性与合理性。最终在学生充分理解的基础上共同归纳出结论,以丰富学生体验知识获得结论的过程,加深记忆。】
(三)提高练习
教材第10页“练习二”第2题:美国人均淡水资源量约为1.38万立方米,我国人均淡水资源量仅为美国的。我国人均淡水资源量是多少万立方米?
1.学生独立完成,一生板演。
2.反馈计算过程,强调能约分的先约分再乘。并适时补充我国的水资源知识,进行节约用水教育。
(四)拓展练习(多余条件)(机动)
教材第10页“练习二”第4题:蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜总质量的。如果有2.5kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?
1.学生独立完成。
2.交流汇报。
3.教师点拨:在解决含多余条件的实际问题时,要先弄清楚题意,看问题所需的条件是什么,选择恰当的条件,找出多余条件,然后分析数量关系,列出算式,最后检验结果是否正确。
【设计意图:这道题隐含了一个多余条件,增加了学生的审题难度,所以要引导学生在解决问题的过程中找准题目中的关键条件,提高学生的审题能力,掌握解决含多余条件的实际问题的一些基本策略。】
(五)课堂小结:今天我们学习了什么内容?(板书课题:分数乘小数)分数乘小数怎么计算?计算时应该注意什么?
【设计意图:通过让学生自主回顾本课所学知识,指导学生把新旧知识联系起来,形成知识结构,既帮助学生理清思路、把握学习重难点,又巩固新知识、强化记忆。】
教学目标:
1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、培养学生分析能力,发展学生思维。
教学重点:
理解题中的单位1和问题的关系。
教学难点:
抓住知识关键,正确、灵活判断单位1。
教具准备:
多媒体课件。
教学过程:
一、复习引入(激发兴趣,引入铺垫)
1、列式计算。
(1)20的 是多少?
(2)6的 是多少?
二、自主探究(自主学习,探讨问题)
1、教学例1。
出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示100千克白菜。
吃了 ,吃了谁的 ?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?
教师边说边画出下图
(3)分析数量关系,启发解题思路。
A.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?
B.分组讨论交流:依据吃了100千克的 把哪个量看作单位1呢?为什么?你是怎样想的?
(4)列式计算。
A.学生完整叙述解题思路。
B.学生列式计算,教师板书: (千克)
C.写出答话,教师板书:答:吃了80千克。
(5)总结思路。
根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。
(6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?
2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。
三、拓展总结(应用拓展,盘点收获)
1、判断下面每组中的两个量,应该把谁看作单位1。
(1)乙是甲的 ,甲是乙的 。
(2)甲是乙的 ,乙是甲的 倍。
2、练习四1、2题,完成在练习本上,然后订正。
3、操作:画出体育小组的人数是美术小组的 倍的线段图自己补充条件和问题并解答。
教学目标:
1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。
2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。
3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。
教学重点:
一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。
教学难点:
理解分数表示的“分率”和“具体量”的区别。
教学过程:
一、创设情境,切入课题
朗读诗歌。出示《春》的诗句:
春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。
这首诗的最大特点是什么?你能用我们学过的数学语言来描述吗?能编一些分数乘法解决的问题吗?
例如:“春”的字数占总字数的`几分之几?
《春》这首诗共有30个字,光“春”字就占了全诗的五分之二,其他字有多少个?“春”字只比其他字少几个?
学生解答后交流解题思路
小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。
二、基本练习,掌握方法
题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)
(1)梨子的数量是桔子的五分之二;
五分之二表示()与()的数量关系;
()表示“1”;()表示五分之二;
根据数量关系列示()×()=()。
(2)一袋米,还剩七分之三;(先补充完整“还剩谁的七分之三”)
(3)火车速度比汽车快三分之一
(4)实际烧煤比计划节约八分之三
小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。
三、课堂检测:
1、小强想买一台5600元的电脑,他现在只有这台电脑单价的五分之三的钱,小强要买这台电脑还差多少钱?
2、甲、乙两地相距240千米,一辆汽车从甲地到乙地,已经行驶了120千米,再行驶多少千米距离乙地还有全程的六分之一?
3、一桶油重200千克,第一次用去它的八分之五,第二次用去剩下的五分之二,第二次用去多少千克?
教学内容:
教材第7-9页“分数乘法”(三)
教学目标:
1、通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2、让学生经历猜想、验证等过程,体验数学研究的方法;
3、培养逻辑推理能力,渗透一定的数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学过程:
一、创设情境激趣揭题
1、出示我国古代哲学著作的情景。
2、出示复习题
3×2/5 4/5×2
3、顺势导入新课:分数乘法(三)
二、扶放结合探究新知
1、画图引导学生理解1/2*1/2的算例。
2、出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。
3、出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1、出示教材第8页试一试1-3题。
2、引导学生发现规律。
四、小结评价布置预习
1、引导学生进行课堂小结。
2、布置预习:教材10-11页练习一。
板书设计:
分数乘法(三)
意义:求一个数的几分之几是多少?
计算法则:分子乘分子作分子,分母乘分母作分母。
教学目标:
1、培养学生的计算能力,自主、合作探索意识及解决问题策略优化的思想能灵活运用所学计算方法解决生活中的简单问题。
2、让学生在课堂中交流学习数学的感受,获得学习成功的体验。
教学重点:
理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学准备:
学生做的风筝
教学过程:
一、 复习
1、1/2× 3表示的意义是什么?(让学生自己说一说,)
2、分数乘整数的计算法则是什么?
二、基础练习
1、的3倍是多少?
2、10个是多少?
订正时说说每个算式表示的意义。
三、专项练习
1、自主练习第4、5、6题
这三题是运用分数和整数相乘的知识解决实际问题的题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。
2、第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。
3、第7、10题
这两道题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。
4、第9、12题
这两道题是学生自己独立作,利用分数与除法的关系解决问题的。
四、合作总结
这节课你巩固了那些知识?
五、创意作业
同桌出题交换解答,交换批改,共同提高。
教学内容:
教材第2页例1练习一1~3
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
分数乘法
1、分数乘法的意义和计算法则:
课时:1课时。 总课时:1课时。执行时间:
课题:分数乘整数。
教学目的:
1、 使学生理解分数乘整数的意义;
2、 握分数乘整数的`计算法则,并能够正确地进行计算。
3、 培养学生的学习兴趣。教具:多媒体教学课件。
教学过程():
一、 复习引入
1、 5个12是多少?怎么样列式?
算式:12+12+12+12+12=60或12×5=60
小结:求几个相同加数的和,可以用加法算,也可以用乘法算。
2、 计算:
2/7+2/7+2/7 3/10+3/10+3/10
(1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?
二、 尝试、探究
1、 分数乘整数的意义,
(1)学生说,教师板书:2/7×3 3/10×3
(2)学生交流。(3)教师强调意义。
2、 探究分数乘整数的计算法则,
(1) 学生试计算3/10×3,汇报交流,
方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.
(3)肯定学生想法,
课件演示【例1】看教本:
小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?
(1)学生审题, (2)引导学生看思考,
(2) 学生交流板书:
用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)
用乘法算:2/9×3=2×3/9=6/9=2/3(块)
答:3个人一共吃2/3块。
(4)小结计算法则:
三、 巩固练习
1、 做练习一的第1题。
2、 做一做,
四、 作业:第3、4题。
五、 后记:
一、教学目标:
1、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。
2、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
二、重点难点:
学生能够熟练的计算出整数乘以不同分数的结果。
三、教学方法:
师生共同归纳和推理。
四、教学准备:
教学参考书、教科书。
五、教学过程:
(一)复习导入。
教师出示教学板书,请学生计算下列分数加减运算题。
1、教师:来回巡视学生的做题情况,并提问学生说说每一道算式的意义。
2、学生寻找完毕,纷纷举手准备回答问题。
3、教师提问学生回答问题,并注意更正学生的错误和表扬回答问题的同学。
(二)课堂练习。
学生做第1题,教师注意让学生对比好门和小明的高度,并注意进行长度单位的换算。
学生做第2题,教师注意提醒学生及时约分化成最简分数。并同桌之间相互说说每个算式的数学意义。
学生做第3题,教师巡视学生做题情况,并及时对有困难得学生进行帮助。
学生做第4题,教师注意让学生能够区分最少和最多这个数字范围,并提问学生说说自己的答案。
(三)课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
××××
14×15×××5
2、计算
××427×
过程要求:
(1)请三位学生上台板演,其余学生做在练习本上。
(2)集体反馈,学生计算过程。
(3)着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1)提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2)将结果写在书上。
2、第6题
(1)认真审题,弄清题意。
(2)分别说明三个问题各属于什么类型的问题。
(3)列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1)学生判断正误,并说明原因。
(2)改正算式。
6、第10题
(1)学生列式计算,教师巡视进行个别指导。
(2)说一说你有什么体会。
三、课后作业设计:
一、计算。
×××14×
×120××24×18
二、列式计算
1、米的是多少米?
2、千克的是多少千克?
3、吨的是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,小时行驶多少千米?
2、一个长方体长米,宽米,高米,它的体积是多少立方米?
课后反思: