最可悲的。不是平行线等距无交点。而是相交后。有了一个焦点却渐行渐远。数学在某个形式中是无解的。为了大家学习方便,学而不思则罔,思而不学则殆,下面是小编Waner给大家收集整理的六年级数学上册教案【精选14篇】,仅供借鉴,希望对大家有所帮助。
第 一 单元 第1课时
课 题 圆的认识(一)
教
学
目
标 1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
教
材
分
析 重点 在观察、操作中体会圆的特征。知道半径和直径的概念。
难点 圆的特征的认识及空间观念的发展。
教具 教学圆规 电化教具 课件
教学过程:
一、观察思考
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)
三、认一认
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认
。
3、
四、画一画,想一想
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直
径呢?(放动画)
2、以点A为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?
五、应用提高
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业
1、教材第5页练一练
2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)
训练学生的观察能力,发现问题的能力
不直接说出圆,把思考的空间留给学生
在画图中体会圆的特征
思考共同之处时再一次体会圆的特征
通过正反例的练习,加深对半径和直径的理解
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)
巩固提高,满足不同学生要求
教学目标:
1、通过解决生活中的`问题,体会数学知识在生活中的作用。
2、培养利用数学知识解决问题的能力。
教学重难点:
利用数学知识解决实际问题。
教学过程:
一、出示情景
一天有个年轻人来到王老板的店里买了一件礼物,这件礼物成本是18元,标价是21元。结果是这个年轻人掏出100元要买这件礼物,王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。但是街坊后来发现那100元是***,王老板无奈还了街坊100元。
现在问题是: 王老板在这次交易中到底损失了多少钱? 提示:其中损失成本18元,不要算成21元。
二、小组讨论
三、汇报结论
四、小结
王老板和街坊之间事实上互不亏欠。王老板在这次交易中到底损失了97元。
五、全课总结
师:通过这节课,你有什么收获?
生:………
【教学内容】
教科书第1~3页例1、2,练习第1~4题。
【教学目标】
1.能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。
2.能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。
3.培养学生的迁移类推能力和自主探索的精神。
【教学重、难点】
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
【教学过程】
一、欣赏主题图,激趣引入
教师:同学们,新的一学期开始了,看看愉快的数学之旅又将带我们到哪些新的站点呢?请同学们观察主题图。(多媒体出示主题图)
教师:认真观察,说说你获得了哪些信息?(学生观察回答)
你们能根据主题图提出哪些数学问题?
这些问题你们能试着列出算式吗?它们都是些什么算式?
(老师随着学生的回答板书相关的连加算式或分数乘法算式)
这些算式中的数有什么特点呢?
学生:有的是加法算式,有的是乘法算式,但这些数都与分数有关。
揭示课题:从今天开始,我们就一起来研究分数乘法。
[评析:新学期开始的第一节课,通过主题图既调动学生开学学习的积极性,又在主题图的信息中,感受数学与生活的联系。同时,教师又注意引导学生在众多信息中注意搜索与分数乘法相关的信息,为本课时教学作好铺垫。]
二、探究新知
1.感知分数乘法的意义。
(1)复习整数乘法的意义。
课件展示,并配上声音:每人吃5个饼,4人共吃多少个饼?
学生列式:5+5+5+55×4
教师:表示什么意思呢?4个5相加的和是多少?5的4倍是多少?
(2)分数乘法的意义。
课件展示例1的情境图:每人吃15个饼,4人吃多少个饼?
学生尝试列式:15+15+15+1515×4或 4×15
教师:表示什么意思呢?与整数乘法的意思相同吗?(4个15是多少;15的4倍是多少?)
2.利用意义探索计算法则。
(1)教师:15×4该怎样算呢?自己在练习本上试一试。
全班汇报,说说你得多少,怎样想的?指名学生回答,得出:
15×4表示4个15相加,4个15就是45。
(2)试一试。
45×2=3×14=
学生在练习本上做好后,集体订正。并请学生说说怎样想的。
(3)口算(教师即时板书):25×2、5×17、29×4、2×45。
(4)议一议:这些分数乘法有什么特点?
结合学生回答板书(分数乘整数),根据刚才的计算,你觉得分数乘整数怎样算?
根据交流小结:分数乘整数,用整数与分子相乘的积作分子,分母不变。
3.教学例2。
(1)出示:38×2 。
教师:这个乘法会算吗?先自己试一试。
学生尝试,并适时提问:你在计算过程中遇到什么问题,你怎么解决的?
教师巡视,发现学生不同的约分方法,并抽学生板书。(学生可能出现:计算结果不约分;先计算出结果再约分;或在计算过程中先约分再计算这三种情况)
全班交流,指名说说计算过程中遇到什么问题,如何解决的。
针对三种不同的情况进行评价:你喜欢哪种方法?为什么?
结合学生交流,老师强调:在分数乘法中,计算结果要化成最简分数。我们可以先将整数与分母约分,再按分数乘整数的方法计算。这样做,计算数据较小,计算更准确。
(2)练习:29×6=12×34=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。
集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与分子约分的错误方法,让学生辨析。
(3)学生再次小结分数乘整数的计算方法。
现在你能比较完整地总结分数乘整数的'计算方法吗?
结合学生交流,小结方法:先看整数与分数的分母能否约分,能约分的先约分,然后用整数与分子相乘的积作分子,分母不变。
[评析:从整数乘法的意义自然过渡到分数乘整数的意义,并通过意义探索计算方法,让数学知识前后联系更紧密。同时注重学生计算方法的主动探索,强调数学知识与方法的自主建构,注重学生错误的提前预判。]
三、巩固练习,反馈提高
1.课堂活动第1题。学生独立完成,集体订正。教师追问:18×5表示什么意思?
2.练习第1~3题。学生独立完成,教师巡视指导学困生,集体讲评。抽1~2题说说计算方法。
四、课堂小结:
本节课你有什么收获?关于分数乘法,你还想知道什么?
[评析:对于分数乘整数的计算法则,教师并没有过多地干预与包办,而是充分的在情境图的基础上,通过整数乘法意义的回顾,经历计算方法的自主探索过程,掌握计算方法。同时,注重独立思考与合作交流的学习方式的运用,让学生真正成为学习的主人。]
一、填空(3题4分,4题3分、8题5分,其余每空2分,共26分)
1、圆形花坛的周长是62.8米,它的面积是( )米。
2、边长是10 m的正方形中放置一个最大的圆,这个圆的面积是( )m2。
3、大正方形的边长是5cm ,小正方形的边长是3cm。
大、小正方形边长的比是( ):( ),比值是( );
大、小正方形周长的比是( ):( );
大、小正方形面积的比是( ):( )。
4、12÷( )=0.2=( ) )=/20 =( )%
5、有6名运动员,如果每两人握一次手,一共握( )次手。
6、24千克是30千克的( )%,30千克比24千克多( )% 。
7、大圆半径是小圆半径的3倍,大圆周长是小圆周长的( )倍,大圆面积是小圆面积的( )倍。
8、下面是五名同学的数学成绩:
张兵94分 李强87分 王飞99分 宋丽100分 贺敏95分
如果把他们的平均成绩记为0,那么这五名同学的成绩分别记为:
张兵( ),李强( ),王飞( ),宋丽( ),贺敏( )。
二、判断(对的画“√”,错的画“×”)(每题1分 共8分)
1、8:15比的前项加上16,要使比值不变,比的后项应加30。 ( )
2、男生比女生多25%,也就是女生比男生少25%。 ( )
3、同圆中,所有的直径都相等,所有的半径都相等。 ( )
4、折线统计图不仅可以表示数量的多少,还可以表示数量的增减变化。( )
5、在一个圆中,直径的数量是半径的1/2。 ( )
6、成活率就是活了的树苗数与共栽树苗数的比的比值。 ( )
7、六一班有50人,今天两人请假,今天这个班的出勤率就是96%。 ( )
8、4吨的20%和1吨的80%一样多。
三、选择(把正确答案的序号填在括号里)(每题2分 共8分)
1、夜晚时离路灯越近,物体影子( )。
①越长 ②越短 ③不变
2、星期天,李老师带同学们乘汽车从学校出发去公园玩,在公园玩了2小时后乘车回学校,下面图( )描述的是上面的叙述。
3、把25克糖溶入100克水中,糖占糖水的百分比是( )
① 25% ②20% ③75%
4、左图中,小明从右边看到的是( ),从上面看到的是( )。
四、计算(26分)
1、化简比(8分)
81 : 27 0.3 : 0.09 5 : 5/7 0.25 : 1
2、求比值(6分)
3/7 : 19/21 0.11 : 22 0 : 0.875
3、解方程(12分)
x - 40%x = 120 15x C 30 = 150
5x - 5/6 =5/4 X + X/5= 240
五、图中“336”表示3是36的因数,用“”表示下面图中各数之间的关系。(5分)
六、解决问题(27分)
1、一个圆柱形水桶的底面周长是18.84dm,这个水桶的底面积是多少?(5分)
2、水果店运来苹果和梨一共350千克,苹果和梨的比是4:3,运来苹果和梨各多少千克?(5分)
3、张师傅加工了500个零件,比计划多100个,实际比计划多百分之几?(5分)
4、商店有一款毛衣,售价120元,比原价便宜40%,原价多少元?(5分)
5、下面是某班六个小组的男、女生课外藏书情况统计:(7分)
小组 一 二 三 四 五 六
男生册书/册 46 36 40 30 38 42
女生册书/册 40 32 48 42 40 35
请用统计图表示各小组男、女生课外藏书情况。
册数/册 男生:
女生:
根据上图,你能获得哪些信息?(至少写出两条)
[小学六年级数学上册期末试卷北师大版]
教学目标:
1.知识目标:使学生进一步掌握分数乘法的计算方法,能正确解决分数连乘的简单实际问题,拓展分数乘法意义的理解。
2.能力目标:使学生经历解决问题的探索过程,进一步培养观察、比较、分析的能力。
3.情感目标:感受数学知识和方法的应用价值。
教学重点:
能正确计算分数连乘的计算。
教学难点:
能用分数连乘的方法解决实际问题。
教学准备:
教学光盘。
第五课时
教学过程:
一、复习引入
1.下面每个条件分别是以谁为单位“1”的。
23
a是b的3b是c的'5
口答,说说可以列成什么数量关系?
2.今天我们继续学习有关分数乘法新的内容。
板书课题:分数连乘。
二、教学新课
1.教学例6。
(1)理解题意。
83
这里的9和4分别是哪两个量比较的结果?比较时分别把哪个数量看作单位“1”的?三班做的朵数和谁有关?
二班做的朵数和谁有关?
(2)画图分析。
画一条线段表示一班所做绸花的朵数。
可以怎样表示二班做的绸花朵数?
怎样表示三班做的绸花朵数呢?
(3)讨论方法。
要去三班做了多少朵,要先算什么呢?怎样算?
讨论交流,汇报方法。
2.完成练一练。
独立完成计算,展示作业。
说说计算时要注意什么?
三、巩固练习
1.完成练习九第6题。
独立完成,集体核对。
2.完成第7题。
要求四年级去了多少人,先要算什么?为什么要先算五年级去了多少人?怎样算?说说每一步求的是什么?
3.完成第8、9题。
理解题意,弄清解决每一个问题时要先算什么,再算什么?
列式解答。
四、课堂小结
今天学习了什么内容?你对自己的表现满意吗?
一、教材分材:
教材通过介绍某实验田普通水稻与杂交水稻的产量,引出“增产百分之几”的实际问题。通过男孩提出“增产百分之几是什么意思”,引导学生分析数量关系,再一次体会百分数的意义。教材中的算一算提供了两种不同的解答方法,这样安排,开拓学生的思路,发展学生思维的灵活性。
教师可以引导学生画线段图理解。学生明确了“增产百分之几”的意思后,就可以让学生独立解答。需要注意的是,教学时要鼓励学生根据实际问题中的。数量关系和增产百分之几的意义解决问题,而不是依靠记忆题型和套用方法来解决问题。
二、学生分析
在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的百分数问题。在此基础上,进一步学习百分数的应用。教学目标:
1、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。教学过程
一、导入
线段图是把握数量关系的重要方法之一你能用线段图表示下面的数量关系吗?
在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%
学生独立完成线段图
展示学生成果
3、教师对学生的作品进行评价
引导学生分析数量关系,再一次体会百分数的意义。从复习中引导学生分析数量关系。
二、百分数的应用
1、出示教科书P23上面的问题
2、思考:“增产百分之几”是什么意思?学生自由发表自己的见解,教师评价。
杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几
学生独立解答问题,通过介绍某实验田普通水稻与杂交的产量,引出“增产百分之几”的实际问题。
3、班内交流
方法一:
7-5.6 = 1.4(吨)1.4 ÷ 5.6 = 0.25= 25%方法二:
7 ÷ 5.6 = 1.25= 125%
125%-100% = 25%引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。
三、试一试
1、出示教科书P23下面的问题
2、“几成”是什么意思?
成数主要用于农业收成几成就是十分之几。
一成就是1/10,也就是10%二成五就是2.5%,也就是25%重点理解“几成”的意思。让学生独立完成再交流,发展学生的思维。
3、学生独立解决问题(2.61-2.25)÷ 2.25 = 0.36 ÷ 2.25 = 0.16 = 16%
四、练一练
1、教科书P24练一练第1题
2、科书P24练一练第2题
3、教科书P24练一练第3题
五、课堂总结
通过今天的学习你有什么收获?
教学反思:整节课教学完成之后,可以说自己感触很深。这节课是百分数的具体应用。进一步提高学生运用百分数解决问题的能力,综观整个课堂,由于学生在课前调查收集的资料准备充分,所以在导入环节,学生兴趣浓厚,气氛较好。
教学内容:北师大版小学数学第十一册P52的内容及P53的相关练习
教学目标:
1、在实际 情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。
教学重点:比的化简的方法。
教学难点:运用比的化简,解决一些简单的实际问题。
教学过程:
一、复习铺垫,激趣引新。
(一)复习铺垫。
1、比的意义以及比的各部分的名称。
师:什么叫比?请你举个例子。(生说完举例比如4:5 8:9)
师:师举一个例子问“:”叫?4呢?5呢?
2、比与除法、分数之间的联系与区别。
(1)在除法中,我们学过了商不变性质,谁还记得?
在分数中,分数的基本性质又是怎样?
(2)师:你知道比与除法、分数之间有什么联系与区别?
[设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。]
(二)激趣,揭示课题。
过渡:昨天我们学习了《生活中的比》,今天我们要来学习《比的化简》。比应怎样化简?它与分数的基本性质、除法中的商不变性质有什么关系?请同学们来说一说。(某某同学说的是否正确呢,学完今天的知识你们就知道了。)
[设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。]
二、探索新知。
活动一:学一学。
课件出示主题图:淘气和笑笑的对话。
学生带着思考题,看书学习。(思考题①有什么方法比较哪杯水更甜?②如何化简比?③比的化简与分数的约分有什么区别?
[设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。]
活动二:说一说。(反馈看书、自学情况)
①学生汇报比较方法,师根据学生的回答板书。
②教学比的化简。40:360= 40/360 = 1/9 =1:9
2:18=2/18= 1/9 =1:9
③比较:(生说,师重点强调,突出对应思想:A、 比的前项是分子,后项是分母,然后约分。B、约分是写成最简分数,化简比到最后应化成最简整数比。C、引导学生小结化简比的方法。
[设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。]
活动三:化简比。
14:21 0.5:2.5 2/9 :1/3
(1)请三位同学上去板演,其他做在练习本上。
(2)反馈,集体订正:请这三位同学说说,你是怎么化简的?
(3)请同学们观察这3道题,带着思考讨论题小组讨论(先思考再讨论
:①3道题有什么不同点,它们各用什么方法进行化简的?②1、2题化简比的过程中,比的前项和后项如何变化的?请小组讨论后回答,师根据学生的回答小结:
整数比:可以根据商不变的性质或像分数约分那样进行化简。
小数比:可以先利用商不变的性质将其转化为整数比,然后在化简
分数比:可以前项除以后项,再根据比值写出最简单的整数比。
相同点:把比的前项和后项同时除以或乘以相同的数,比值不变。
(4)回顾:比有什么性质,现在谁知道?(生说师课件出示比的基本性质)
[设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。]
活动四:练一练。
1、化简比。15:21 0.12:0.4 2/3 : 1/2 1:2/3
2、连一连,完成P53的第1题。
3、大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是( ),比值是( );大、小正方形周长的比是( ),比值是( );大、小正方形面积的比是( ),比值是( )。
[设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。]
活动五:课堂总结。
今天你学会了什么知识?
以下是数学论坛陈春艳的修改:
要求:以下为东山县樟塘中心小学 林敏卿老师的教学设计《比的化简》,欢迎大家就目标确定、教法选择、环节设计、作业设置等方面,提出建议或评点 。
教学内容:北师大版小学数学第十一册P52的内容及P53的相关练习
教学目标:
1、在实际 情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。 加了一条目标,目的是什么?
教学重点:比的化简的方法。 会用商不变的性质或分数的基本性质化简比
教学难点:运用比的化简,解决一些简单的实际问题。
教学过程:
一、复习铺垫,激趣引新。
(一)复习铺垫。
1、比的意义以及比的各部分的名称。
师:什么叫比?请你举个例子。(生说完举例比如4:5 8:9) 说一个生活中的比比教合适,这么问有点太抽象。
师:师举一个例子问“:”叫?4呢?5呢?
2、比与除法、分数之间的联系与区别。
(1)在除法中,我们学过了商不变性质,谁还记得?
在分数中,分数的基本性质又是怎样?
(2)师:你知道比与除法、分数之间有什么联系与区别? 是不是问题出现太早?
[设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。]
(二)激趣,揭示课题。
过渡:昨天我们学习了《生活中的比》,今天我们要来学习《比的化简》。比应怎样化简?它与分数的基本性质、除法中的商不变性质有什么关系?请同学们来说一说。(某某同学说的是否正确呢,学完今天的知识你们就知道了。)
[设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。]
二、探索新知。
活动一:学一学。
课件出示主题图:淘气和笑笑的对话。
学生带着思考题,看书学习。(思考题①有什么方法比较哪杯水更甜?②如何化简比?③比的化简与分数的约分有什么区别?
[设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。]
活动二:说一说。(反馈看书、自学情况)
①学生汇报比较方法,师根据学生的回答板书。
②教学比的化简。40:360= 40/360 = 1/9 =1:9
2:18=2/18= 1/9 =1:9
③比较:(生说,师重点强调,突出对应思想:A、 比的前项是分子,后项是分母,然后约分。B、约分是写成最简分数,化简比到最后应化成最简整数比。C、引导学生小结化简比的方法。
[设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。]
活动三:化简比。
14:21 0.5:2.5 2/9 :1/3
(1)请三位同学上去板演,其他做在练习本上。
(2)反馈,集体订正:请这三位同学说说,你是怎么化简的?
(3)请同学们观察这3道题,带着思考讨论题小组讨论(先思考再讨论
:①3道题有什么不同点,它们各用什么方法进行化简的?②1、2题化简比的过程中,比的前项和后项如何变化的?请小组讨论后回答,师根据学生的回答小结:
整数比:可以根据商不变的性质或像分数约分那样进行化简。
小数比:可以先利用商不变的性质将其转化为整数比,然后在化简
分数比:可以前项除以后项,再根据比值写出最简单的整数比。
相同点:把比的前项和后项同时除以或乘以相同的数,比值不变。 说的不准确。“比的前项和后项同时乘上或除以相同的数(0除外),比值不变。”一定注意强调“0除外”。
(4)回顾:比有什么性质,现在谁知道?(生说师课件出示比的基本性质)
[设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。]
活动四:练一练。
1、化简比。15:21 0.12:0.4 2/3 : 1/2 1:2/3
2、连一连,完成P53的第1题。
3、大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是( ),比值是( );大、小正方形周长的比是( ),比值是( );大、小正方形面积的比是( ),比值是( )。
[设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。]
活动五:课堂总结。
今天你学会了什么知识?
一、教学内容分析
本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。
二、学生分析
学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。
三、学习目标(以学生为主语)
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。
四、教学活动(此环节可以是课堂实录)
1.导入
问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?
过程:互相讨论,发表看法,如何比较。(学生发言老师板书)
小结:比较的结果一样甜,分数可以约分比也可以化简。
2.新授
①引入 “最简单整数比”的概念。
最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。
②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!
③出示问题尝试并讨论:
12:8 0.7:0.8 2/5:1/4
1.能不能把整数比化简成最简单的整数比?如何化?
2.能不能把分数比化简成最简单的整数比?如何化?
3.能不能把小数比化简成最简单的整数比?如何化?
④交流
1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
⑤介绍比的基本性质
3.练习
1、P51页化简下面各比。(独立完成,集体评讲)
2、练习:做书上练一练的第1、2题。
五、教师反思
比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。
设计说明
圆的周长是在学生认识了圆,了解半径和直径关系的基础上进行教学的,是学生初步研究曲线图形的基本方法的开始。鉴于本课时的教学属于计算公式的教学,在设计上突出了以下两点:
1.循序渐进,逐层展开。
教师是学生学习的组织者、引导者、合作者,根据这一理念,我遵循激、导、探、放的原则,引导学生思考、操作,鼓励学生概括、交流。学生运用知识去大胆尝试,在尝试中培养学生自主探究、合作交流、动手操作的能力。
2.动手实验,突破关键。
理解和认识圆周率是推导圆的周长计算公式的关键。教学时用较多的时间组织学生动手实验,探究和认识圆周率,让学生在猜测、实验、验证、计算、交流中发现和认识圆周率,理解周长计算公式的来龙去脉。
课前准备
教师准备
PPT课件
学生准备
直尺、圆形硬纸板、圆规
教学过程
第1课时
认识圆的周长
创设情境,导入新课
1.课件出示两辆车,车轮的大小不一样。
师:明明和刚刚分别骑着自行车和踏板车,如果轮子只滚动一圈,哪个滚得远?
学生讨论、交流,得出车轮越大,滚一圈就越远。
2.引入:在课前,我们通过学情检测卡的内容,已经了解了车轮滚一圈的长度就是它的周长。这节课我们一起来探究圆的周长。
教学目标:
1、知识与能力:使学生认识圆,会用圆规画圆,掌握圆的特征,理解同圆或等圆中半径与直径的关系。
2、过程与方法:培养学生的探索能力。
3、情感,态度,价值观:渗透数学来源于生活又应用于生活的道理。
教学重点:
会用圆规画圆,掌握圆的特征,理解同圆或等圆中半径与直径的关系。
教学难点:
理解同圆或等圆中半径和直径的关系。
教学准备:
课件,白纸,圆规。
教学过程:
一、激趣设疑,导入新课。
1、示四驱车,问这是什么?
2、(课件)出示汽车的图片,问,你们发现它们都有个共同的特点是什么?
追问:为什么车轮都是圆的,如果不是圆的会怎样?
3、导入,板题:圆的认识
4、你想了解圆的哪些知识?(学生自由回答)
二、在画圆的教学活动中探索新知。
1、任意画圆,体会什么是圆。
(1)画一个圆
(2)展示,比较哪个圆,哪个不圆?问:怎么就画圆了?
(3)请学生说说你是怎样用圆规画圆的?
2、用圆规画圆,理解圆的构成及圆心。
(1)让学生在白纸的四个角上分别画一个圆,边画边想:圆是由什么组成的?(圆周,圆心)
(2)展示(圆的和不圆的对比)说说为什么有的同学画不圆?怎样就画圆了?
(3)画圆时固定的一点谁知道叫什么?(板书:圆心)
(4)标出你所画的圆的圆心。
(5)圆心的重要性:你能说说你是怎样确定圆的位置的?
3、通过画圆感悟什么是半径及特征。
(1)请你在画一个比刚才再大一点的圆,边画边思考:怎么就比刚才大一点了?
(2)在圆上表示出圆规两交叉开的长度。
(3)师:这条线段也有名称,你能试着给它起个名字吗?(板:半径)
(4)请你任选一个圆画出它的半径,边画边想:你能画多少条?你发现了什么?体会半径是什么样的线段?
(5)汇报追问:你怎么知道半径长度都相等的?
(6)判断,哪条线段是半径?
(7)讨论:什么叫半径?(汇报)
(8)再画一个比刚才小一点的圆,说说你认为圆的大小和什么有关?
4、通过画圆感悟什么是直径及特征。
(1)课件演示:问:看这两条半径怎样了?
(2)你知道这条线段叫什么吗?(板:直径)
(3)画一个圆,并画出它的直径,边画边想:半径和直径有什么区别?
(4)判断,哪条线段是直径?
(5)说说什么叫直径?
(6)观察直径有什么特征?
5、画一个圆,并画出一条半径和一条直径。
观察讨论:半径和直径有什么关系?(汇报)
三、解决生活中的实际问题。
1、说说为什么车轮是圆的?
2、马路上的井盖为什么做成圆的?
四、谈谈你的收获。
【教学内容】
北师大版小学数学六年级(上册)第四单元第54页“比的应用”。
【教学目标】
能运用比的意__决按照一定的比进行分配的实际问题,进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。 【教学重点】
1、理解按一定比例来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
【教具准备】
CAI课件
【教学设计】
教 学 过 程
教 学 过 程 说 明
一、 创设情境:
1、 出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?
2、 请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、 出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2) 记录分配的过程。
(3)各小组汇报:自己的分法。
大班 小班
3个 2个
6个 4个
30个 20个
…… ……
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1) 小组合作。
(2) 交流、展示。
(3) 比较不同的方法,找找他们的共同点。
方法一:
大班 小班
30个 20个
30个 20个
…… ……
方法二:画图
140个
方法三:列式
3+2=5
140× = 84(个)
140× = 56 (个)
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)
五、总结:1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
六、【板书】
比的应用
3+2=5
140× = 84(个)
140× = 56 (个)
答:大班分84个,小班分56个,比较合理 提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
教学目标:
1、进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。
2、能灵活运用本单元研究得出的知识解答问题。
3、进一步感受数学的应用价值。
教学重点:
圆的周长和面积的计算。
教学难点:
综合应用。
教学过程:
一。引入
1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。
2.揭示课题。
二。展开
1.求圆面积的练习
先用小黑板出示P27练习1——2再指名板演,
然后让板演者说说计算过程。最后再次复习圆面
积在各种条件下的计算公式:S=πr2=π( )2
2.综合应用。
投影出示P27练习3~4题,先由4人组成小组
进行讨论,并解答,然后在全班同学面前汇报,
特别要说清思考过程,最后,教师讲解。
三。总结
本节课我们复习了什么?
四。作业
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:
使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。
教学难点:
理解比的意义,掌握比与比值的区别。
教学过程:
一、情境导入
1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?
预设可能提出的问题:
(1)周长和面积
(2)长比宽多几米?
(3)宽比长短几米?
(4)长是宽的几倍?
(5)宽是长的几分之几?
师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。
二、共同探讨,学习新知(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。
(2)交流小结:
板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?
(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)
(二)、完
成试一试在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
三、教学例
2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)
1、想一想,我们怎样求两人的速度?
2、
2、学生计算答案,汇报填表。
3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)、理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例
1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
(三)、认识“比值”、及与“比”的区别:
1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?
我们把比的前项除以后项所得的商叫做比值。
2、说说这几个比值分别表示什么?
3、讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
(四)、“试一试”
1、完成“试一试”:(学生独立完成,指名板演)
2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的。前项,再写横线表示比,最后写后项,仍应读作3比2。)
(五)、比、除法和分数的关系
1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数
2、完成“练一练”的1、2、3小题。
3、完成练习十三的第4题。
4、糖水的甜度(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?
(2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?
(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?
5、知识介绍:
同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。
五、总结:
今天我们学习了什么?你们有什么收获吗?还有什么问题吗?
教学内容:
教材第72~73页的内容。
教学目标:
1.在实际情境中,让学生体会化简比的必要性,进一步体会比的意义,理解化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
2.在观察、比较的过程中,促进知识迁移,培养学生的概括能力。
3.体验知识的相通性以及数学与生活的联系。
教学重点:
正确运用商不变的性质或分数的基本性质来化简比。
教学难点:
化简比,并解决生活的实际问题。
教学准备:
… …教学课件。
教学过程
学生活动
(二次备课)
一、情境导入
今天淘气和笑笑做了一个实验,想请同学们也去参加,下面我们就一起去看看吧。课件出示情境图。
淘气调制一杯蜂蜜水,用了3小杯蜂蜜,12小杯水。
笑笑调制一杯蜂蜜水,用了4小杯蜂蜜,16小杯水。
那么,请同学们猜一猜哪杯水更甜呢?
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1.体会化简比的必要性。
(1)再次提出问题:哪杯蜂蜜水更甜,你现在能判断出来吗?你遇到了什么问题?
想想办法,先和同桌交流。
学生汇报:蜂蜜的含量越高,蜂蜜水越甜。即蜂蜜与水的比值越大,蜂蜜水越甜。
(2)让学生自己求两杯蜂蜜中蜂蜜和水的比值,寻找结果。
3∶12==
4∶16==
计算后可知:两杯蜂蜜中,蜂蜜和水的比值都是,所以一样甜。
(3)师:如果能知道两杯蜂蜜水中平均1小杯蜂蜜用了几小杯水是不是也可以比较呢?怎样才能知道?请在小组内讨论。
在交流的过程中教师要引导学生理解:先把比转化成分数,利用分数的基本性质约分,再转化成比的方法。
3∶12==1∶4
4∶16===1∶4
根据比我们发现两杯蜂蜜水中蜂蜜与水的比都是1∶4,也就是平均1小杯蜂蜜都用4小杯水,所以两杯水一样甜。
小结:当比的两项数值较大时,有时会给判断带来不便,这时就需要根据一定的规则,在不改变比值大小的情况下,将比的前项和后项同时缩小,这样更便于我们观察比较。
2.探究比的特殊性质。
师:如何把比的前项和后项变小呢?我们先看看笑笑写的几组相等的比,说一说你有什么发现?
课件出示,让学生观察后说一说。
学生能够说出两组比的变化情况:第1组把1∶2的前项和后项都乘10,比值不变;第2组把4∶12的前项和后项都除以4,比值不变。
引导学生:你能不能用一句话说出这个规律?
小结:比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。
师:这与这们学过的什么知识有相似之处?
生:和我们以前学习的商不变的规律、分数的基本性质一样。
师:比的前项和后项为什么不能同时乘或除以0?
生:因为比的后项乘或除以0,比的后项就是0,这个比就没有意义。
3.化简比。
了解了比有这样的性质,那么我们就可以运用它在不改变比值大小的情况下,将比的前项和后项同时缩小,这就是化简比。
师:分数可以约分,比也可以化简,你能化简下面的比吗?
24∶42∶0.7∶0.8
以小组为单位交流讨论化简的方法,然后汇报。
生1:化简24∶42,可以先把比改写成分数的形式,再进行约分,再改写成比。
生2:化简∶,可以用比的前项除以比的后项,商用最简分数表示,再转化成比。
生3:化简0.7∶0.8,可以先把小数比改写成除法算式,根据商不变的性质,化成整数比后再化简。
教师根据学生的汇报,在黑板上板演。
教师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比。但要注意,要使比值不变。在做题时可根据题目需要和自己的喜好选择。
四、巩固练习
1.完成教材第73页“练一练”第1题。
先让学生独立写出各杯中糖与水的质量比。教师问:根据现在的比可以看到有一样甜的吗?(不能,因为每个比的前项和后项都不完全相同)教师追问:那怎么办?(要把比化简后再比较)
2.完成教材第73页“练一练”第3题。
学生独立完成后汇报。在汇报时让学生说说自己化简的方法。
3.完成教材第73页“练一练”第4题。
学生首先完成第(1)(2)小题后,想一想,比值化成百分数后表示的意义是什么。学生能够想到它表示两人的命中率。然后再让学生回答:不马虎和奇思谁的命中率高。
五、拓展提升
1.甲数和乙数的。比是3∶4,乙数和丙数的比是5∶7,甲、乙、丙三个数的比是多少?
15∶20∶28
2.三个队共同完成一项工程,一队完成总工程的,二队完成总工程的,三队完成总工程的,三个队完成工程量的比是多少?
1∶2∶3
六、课堂总结
这节课你有哪些收获?你还有什么疑问?
七、作业布置
教材第73页“练一练”第2题。
指名回答。
教师根据学生预习的情况,有侧重点地调整教学方案。
学生思考在小组内交流。
学生在小组内讨论后汇报。
独立思考、小组交流后汇报。
独立完成后集体订正。
在小组讨论后完成。
学生回顾并提出问题。
板书设计
比的化简
比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。
教学反思
成功之处:这节课利用实际生活情境提出问题,培养学生解决问题的能力。并且在解决问题时采用多种解题思路,让学生对知识有一个系统的理解和掌握。通过对比使学生从旧知迁移到新知,更好的理解和掌握新授知识,达到知识的系统化。
不足之处:对最简整数比没有强调提出,而且对化简比的方法也没有作总结性的归纳。课上练习题不足。
教学建议:教学时,如果课上时间不充裕,可以增加一节练习课或课下增加练习量。