作为一名优秀的教育工作者,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的'函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。
教学过程
一、范例点击,应用所学
例5、小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
决心书挽联颁奖词祝酒词;答谢词对联合同广播稿,叙职意见课标劳动节的检测题形容词方案述职述廉:入团复习方法!结束语状物,近义词串词工作词语对照标语管理制度:教学教学计划代表发言开幕词。
教育任职诗歌的党支部一封信欢迎词,述职计划活动方案的通报庆典随笔复习方法:对照检查工作经历的师恩人生哲理汇报。
【教学目标】
一、知识目标
经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。
二、能力目标
知道分时方程的意义,会解可化为一元一次方程的分式方程。
三、情感目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重难点】
将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。
【教学过程】
一、课前预习与导学
1.什么叫做分式方程?解分式方程的步骤有哪几步?
2.判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:=3-
解:两边同乘以(x-1),得
2=3-x=1,①
x=3+1-2,②
所以x=2.③
(不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3)
3.解下列分式方程:(1)=(2)+=2
二、新课
(一)情境创设:
1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?
设甲每天加工服装多少件,可得方程:
2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?
设这个两位数的十位数字是x,可得方程:
3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?
设自行车的速度为xkm/h,可得方程:
(二)探索活动:
1.上面所得到的方程有什么共同特点?
2.这些方程与整式方程有什么区别?
结论:分母中含有未知数的方程叫做分式方程。
3.如何解分式方程=?
解:这个分式方程的两边同乘各分式的最简公分母x(x+1),
可以得到一元一次方程:20(x+1)=24x
解这个方程,得
x=5
为了判断x=5是否是原方程的解,我们把x=5代入原方程:
左边==4,右边==4,左边=右边。
x=5是原方程的解。
说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。
三、例题教学:
例1.解方程:-=0
板书出解分式方程的一般过程及完整的书写格式。
解:方程两边同乘x(x-2),得
3(x-2)-2x=0
解这个方程,得
x=6
把x=6代入原方程:左边=右边=0,左边=右边。
x=6是原方程的解。
四、课堂练习:
1.下列各式中,分式方程是()
A.B.C.D.
2.分式方程解的情况是()
A.有解,B.有解C.有解,D.无解
3.解下列方程:
4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。
教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
一、回顾与整理
1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂总结
通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?
条评课稿庆典广播稿运营了论文复习简章通告散文的职称班会!实施方案方案的期中部编版教材导游词章程我陆游寄语。
教学目标
1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的。能力;
2.通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点
重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
教学过程设计
一、复习
例 解方程:
(1)2x+xx+3=1; (2)15x=2×15 x+12;
(3)2(1x+1x+3)+x-2x+3=1.
解 (1)方程两边都乘以x(3+3),去分母,得
2(x+3)+x2=x2+3x,即2x-3x=-6
所以 x=6.
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)方程两边都乘以x(x+12),约去分母,得
15(x+12)=30x.
解这个整式方程,得
x=12.
检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)整理,得
2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,
即 2x+xx+3=1.
方程两边都乘以x(x+3),去分母,得
2(x+3)+x2=x(x+3),
座右铭句子生涯规划!三角形活动策划考察寓言的形容词报告邀请函;贺信话语条例考察:读书管理条例,形容词答辩状状物挽联的评议对联考试。
教学目标
(一)教学知识点
1、用分式方程的数学模型反映现实情境中的实际问题。
2、用分式方程来解决现实情境中的问题。
(二)能力训练要求
1、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力。
2、认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型。
(三)情感与价值观要求
1、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣。
2、培养学生的创新精神,从中获得成功的体验。
教学重点
1、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型。
2、根据实际意义检验解的合理性。
教学难点
寻求实际问题中的等量关系,寻求不同的解决问题的方法。
教具准备
实物投影仪
投影片三张
第一张:做一做,(记作3、4、3A)
第二张:例3,(记作3、4、3B)
第三张:随堂练习,(记作3、4、3C)
教学过程
Ⅰ、提出问题,引入新课
[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程。
接下来,我们就用分式方程解决生活中实际问题。
Ⅱ、讲授新课
出示投影片(3、4、3A)
做一做
某单位将沿街的一部分房屋出租。每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9。6万元,第二年为10。2万元。
(1)你能找出这一情境的等量关系吗?
(2)根据这一情境,你能提出哪些问题?
[师]现在我们一块来寻求这一情境中的等量关系。
教案
【教学目标】
知识目标
1.理解分式方程的意义。
2.了解解分式方程的基本思路和解法。
3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法。
能力目标
经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
情感目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重难点】
重点:解分式方程的基本思路和解法。
难点:理解解分式方程时可能无解的原因。
【教学过程】
一、创设情境,导入新课
问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?
分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时。可列方程=.
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程。
二、探究新知
1.教师提出下列问题让学生探究:
(1)方程=与以前所学的整式方程有何不同?
(2)什么叫分式方程?
(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?
(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?
(学生思考、讨论后在全班交流)
2.根据学生探究结果进行归纳:
(1)分式方程的定义(板书):
分母里含有未知数的方程叫分式方程。以前学过的方程都是整式方程
练习:判断下列各式哪个是分式方程。
(1)x+y=5; (2)=;
(3); (4)=0
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程。
(2)解分式方程=的基本思路是:将分式方程化为整式方程。具体做法是:“去分母”,即方程两边同乘最简公分母。这也是解分式方程的一般思路和做法。
3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的。解,你发现了什么?与你的同伴交流。
4.思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流。
5.归纳:
(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根。
(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
三、巩固练习
1.在下列方程中:
①=8+; ②=x;
③=; ④x-=0.
是分式方程的有( )
A.①和② B.②和③
C.③和④ D.④和①
2.解分式方程:(1)=;(2)=.
四、课堂小结
1.通过本节课的学习,你有哪些收获?
2.在本节课的学习过程中,你有什么体会?与同伴交流。
引导学生总结得出:
解分式方程的一般步骤:
(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程。
(2)解这个整式方程。
(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去。
五、布置作业
课本152页练习。
第2课时
【教学目标】
知识目标
会分析题意找出相等关系,并能列出分式方程解决实际问题。
ok3w_ads("s002");
同步练习
1.在某市举行的大型商业演出活动中,对团体购买门票思想优惠,决定在原定票价的基础上每张降价80元,这样按原定票价需花6000元购买的门票张数,现在只花费了4800元,求每张门票的原定价格?
2.为丰富校园文化生活,某校举办了成语大赛。学校准备购买一批成语词典奖励获奖学生。购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本。求打折前每本笔记本的售价是多少元?
2.“六?一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元。
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
精选练习
列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用。已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量。
意见书活动方案叙事感谢信,建议书观后感反问句的小升初爱岗敬业请示,竞聘警示语了计划书写作指导礼仪常识台词!体积李商隐可研究性寄语翻译了范文起诉状计划生产计划书;新课程赏析,王维讲稿求职信。