这里是整理的变频器论文(优秀5篇),希望能够帮助到大家。
[关键词]PLC变频调速器多电机控制网络通讯协议
一、引言
以变频调速器为调速控制器的同步控制系统、比例控制系统和同速系统等已广泛应用于冶金、机械、纺织、化工等行业。以比例控制系统为例,一般的系统构成如图1所示。
工作时操作人员通过控制机(可为PLC或工业PC)设定比例运行参数,然后控制机通过D/A转换模件发出控制变频调速器的速度指令使各个变频调速器带动电机按一定的速度比例运转。此方案对电机数目不多,电机分布比较集中的应用系统较合适。但对于大规模生产自动线,一方面电机数目较多,另一方面电机分布距离较远。采用此控制方案时由于速度指令信号在长距离传输中的衰减和外界的干扰,使整个系统的工作稳定性和可靠性降低;同时大量D/A转换模件使系统成本增加。为此我们提出了PLC与变频调速器构成多分支通讯控制网络。该系统成本较低、信号传输距离远、抗干扰能力强,尤其适合远距离,多电机控制。
二、系统硬件构成
系统硬件结构如图2所示,主要由下列组件构成;
1、FX0N—24MR为PLC基本单元,执行系统及用户软件,是系统的核心。
2、FX0N—485ADP为FX0N系统PLC的通讯适配器,该模块的主要作用是在计算机—PLC通讯系统中作为子站接受计算机发给PLC的信息或在多PLC构成n:n网络时作为网络适配器,一般只作为规定协议的收信单元使用。本文作者在分析其结构的基础上,将其作为通讯主站使用,完成变频调速器控制信号的发送。
3、FR—CU03为FR—A044系列比例调速器的计算机连接单元,符合RS—422/RS—485通讯规范,用于实现计算机与多台变频调速器的连网。通过该单元能够在网络上实现变频调速器的运行控制(如启动、停止、运行频率设定)、参数设定和状态监控等功能,是变频器的网络接口。
4、FR—A044变频调查器,实现电机调速。
在1:n(本文中为1:3)多分支通讯网络中,每个变频器为一个子站,每个子站均有一个站号,事先由参数设定单元设定。工作过程中,PLC通过FX0N—485ADP发有关命令信息后,各个子站均收到该信息,然后每个子站判断该信息的站号地址是否与本站站号一致。若一致则处理该信息并返回应答信息;若不一致则放弃该信息的处理,这样就保证了在网络上同时只有一个子站与主站交换信息。
三、软件设计
1、通讯协议
FR—CU03规定计算机与变频器的通讯过程如图3所示,
该过程最多分5个阶段。?、计算机发出通讯请求;?、变频器处理等待;?、变频器作出应答;?、计算机处理等待;?、计算机作出应答。根据不同的通讯要求完成相应的过程,如写变频器启停控制命令时完成?~?三个过程;监视变频器运行频率时完成?~?五个过程。不论是写数据还是读数据,均有计算机发出请求,变频器只是被动接受请求并作出应答。每个阶段的数据格式均有差别。图4分别为写变频器控制命令和变频器运行频率的数据格式。
2、[]PLC编程
要实现对变频器的控制,必须对PLC进行编程,通过程序实现PLC与变频器信息交换的控制。PLC程序应完成FX0N—485ADP通讯适配器的初始化、控制命令字的组合、代码转换及变频器应答信息的处理等工作。PLC梯形图程序(部分程序)如图5所示。
程序中通讯发送缓冲区为D127~D149;接受缓冲区为D150~D160。电机1启动、停止分别由X0的上升、下降沿控制;电机2启动、停止分别由X1的上升、下降沿控制;电机3启动、停止分别由X2的上升、下降沿控制。程序由系统起始脉冲M8002初始化FX0N—485ADP的通讯协议;然后进行启动、停止信号的处理。以电机1启动为例,X0的上升沿M50吸合,变频器1的站号送入D130,运行命令字送入D135,ENQ、写运行命令的控制字和等待时间等由编程器事先写入D131、D132、D133;接着求校验和并送入D136、D137;最后置M8122允许RS指令发送控制信息到。变频器受到信号后立刻返回应答信息,此信息FX0N—485ADP收到后置M8132,PLC根据情况作出相应处理后结束程序。
四、结语
1、实际使用表明,该方案能够实现PLC通过网络对变频调速器的运行控制、参数设定和运行状态监控。
2、该系统最多可控制变频调速器32台,最大距离500m。
动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,因提供可控的高性能变压变频的交流电源而得到迅猛发展。
变频器的快速发展得益于电力电子技术、计算机技术和自动控制技术及电机控制理论的发展。变频器的发展水平是由电力电子技术、电机控制方式以及自动化控制水平三个方面决定的。当前竞争的焦点在于高压变频器的研究开发生产方面。
随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而且厂家仍在不断地提高可靠性,为实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。辨别变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;最后还要看本身的能量损耗(即效率)。这里仅以量大面广的交—直—交变频器为例,阐述其发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。
在变频器主电路的拓扑结构方面。变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的转动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。
脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。
交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。微处理器的进步使数字控制成为现代控制器的发展方向。运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。
近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低、体积缩小、结构紧凑、使用便捷、可靠性提高。
在DSP出现之前数字信号处理只能依靠MPU(微处理器)来完成。但MPU较低的处理速度无法满足高速实时的要求。随着大规模集成电路技术的发展,1982年世界上首枚DSP芯片诞生了。这种DSP器件采用微米工艺NMOS技术制作,虽功耗和尺寸稍大,但运算速度却比MPU快了几十倍,尤其在语音合成和编码解码器中得到了广泛应用。DSP芯片的问世标志着DSP应用系统由大型系统向小型化迈进了一大步。随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度成倍提高,成为语音处理、图像硬件处理技术的基础。80年代后期,第三代DSP芯片问世,运算速度进一步提高,其应用于范围逐步扩大到通信、计算机领域。
90年代DSP发展最快,相继出现了第四代和第五代DSP器件。现在的DSP属于第五代产品,它与第四代相比,系统集成度更高,将DSP芯核及组件综合集成在单一芯片上。这种集成度极高的DSP芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们日常消费领域,前景十分可观。
DSP和普通的单片机相比,处理数字运算能力增强10—15倍,可确保系统有更优越的控制性能。数字控制使硬件简化,柔性的控制算法使控制具有很大的灵活性,可实现复杂控制规律,使现代控制理论在运动控制系统中应用成为现实,易于与上层系统连接进行数据传输,便于故障诊断、加强保护和监视功能,使系统智能化。
交流同步电动机已成为交流可调转动中的一颗新星,特别是永磁同步电动机,电机获得无刷结构,功率因数高,效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类,自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交—直—交变压变频器时叫做“直流无换向器电机”或称“无刷直流电动机”。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。
论文摘要:目前我们日常所使用的一些带有或使用变频器驱动系统的设备都会产生大量的高次谐波,这种严重的电磁辐射是我们平时用肉眼看不到的隐形杀手,无论是对我们的身体健康,还是对精密仪器的使用,它都有严重的危害性,而且影响深远。
变频器是运动控制系统中的功率变换器。目前的运动控制系统包含多种学科的技术领域,总的发展趋势是驱
动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,因提供可控的高性能变压变频的交流电源而得到迅猛发展。
变频器的快速发展得益于电力电子技术、计算机技术和自动控制技术及电机控制理论的发展。变频器的发展水平是由电力电子技术、电机控制方式以及自动化控制水平三个方面决定的。当前竞争的焦点在于高压变频器的研究开发生产方面。
随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而且厂家仍在不断地提高可靠性,为实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。辨别变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;最后还要看本身的能量损耗(即效率)。这里仅以量大面广的交—直—交变频器为例,阐述其发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。
在变频器主电路的拓扑结构方面。变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的转动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。
脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。
交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。微处理器的进步使数字控制成为现代控制器的发展方向。运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。
近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低、体积缩小、结构紧凑、使用便捷、可靠性提高。
在DSP出现之前数字信号处理只能依靠MPU(微处理器)来完成。但MPU较低的处理速度无法满足高速实时的要求。随着大规模集成电路技术的发展,1982年世界上首枚DSP芯片诞生了。这种DSP器件采用微米工艺NMOS技术制作,虽功耗和尺寸稍大,但运算速度却比MPU快了几十倍,尤其在语音合成和编码解码器中得到了广泛应用。DSP芯片的问世标志着DSP应用系统由大型系统向小型化迈进了一大步。随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度成倍提高,成为语音处理、图像硬件处理技术的基础。80年代后期,第三代DSP芯片问世,运算速度进一步提高,其应用于范围逐步扩大到通信、计算机领域。
90年代DSP发展最快,相继出现了第四代和第五代DSP器件。现在的DSP属于第五代产品,它与第四代相比,系统集成度更高,将DSP芯核及组件综合集成在单一芯片上。这种集成度极高的DSP芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们日常消费领域,前景十分可观。DSP和普通的单片机相比,处理数字运算能力增强10—15倍,可确保系统有更优越的控制性能。数字控制使硬件简化,柔性的控制算法使控制具有很大的灵活性,可实现复杂控制规律,使现代控制理论在运动控制系统中应用成为现实,易于与上层系统连接进行数据传输,便于故障诊断、加强保护和监视功能,使系统智能化。
论文关键词:变频器调速技术,节能
在生产企业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。而八十年代初发展起来的变频调速技术,正是顺应了工业生产自动化发展的要求,开创了一个全新的智能电机时代。一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出期刊网,从而降低电机功耗达到系统高效运行的目的。八十年代末,该技术引入我国并得到推广。现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。
二、综述
通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。而且期刊网,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。
三、节能分析
通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2期刊网,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。
(1)一般的恒转矩负载要求
变频器必须具备以下几个条件:过载能力较大;过载时间足够;具备较大的启动及转动转矩;具备恒定转矩特性。
(2)对于风机、泵类的负载
选择变频调速系统时需符合以下两个条件:设备经济性、可靠性较高,能够提供稳定的转速;可以针对机电设备的情况选择变频控制模式。
(3)对于恒功率负载
选择变频器时需符合以下两个条件:输出为定值控制;该变频器能够满足对其进行针对性设计的需求。因此,为了确保电机处于经济运行状态,必须根据负载的机械特性,选择合适的变频调速电机。而使用中的变频调速电机,要尽量避免长时间空载、轻载,同时要加强设备维护检修,使其保持在最佳工作状态,
二改进四象限变频器,提高煤矿机电设备的灵活性
采煤作业环境复杂多变,大量机电设备处于负荷频繁波动状态,这些因素给煤矿安全生产带来了很大困扰。当前煤矿机电设备采用四象变频器技术大大缓解了这个现象。四象限变频器将整流电路由原来的全波整流桥调整为由智能功率模块构成的可控整流桥,以便更好地完成采掘工作。四象限变频器与普通变频器的区别在于电机处于发电状态时,其逆变电路和整流电路将会发生互换,从而实现将电机所产生的电量输送至其他设备的目的。
1在采煤机中的应用
我国采煤机变频调速系统已由之前的“一拖二”改进为现在的“一拖一”。我国自主研发的采煤机已处于世界领先水平,例如采煤机ACS-800变频器,可以确保加速时不过流、减速时不过压。整个过程可根据电机功率进行计算,还能根据现场情况做适当调整,从而实现降低能耗、提升工作效率的目的。
2在提升机中的应用
在煤矿提升装置中应用时,普通变频器存在较大的弊端,问题主要在于电机制动产生的能量会过多消耗在电阻上。变频技术的创新,可以将电机处于二、四象限运行过程中发电产生的电能回馈给电网侧使用,从而让提升机实现匀速、加速工作与平稳启动、关闭,并借助数字控制系统有效提升工作效率,这对保障工作人员的人身安全起着重要作用。
3在胶带输送机中的应用
胶带输送机具有大功率、高电压等特点,主要通过胶带与轮毂之间的摩擦作用实现煤炭传送。可以采用变频节能技术对上山胶带输送机进行改造,原理和提升机相似,改造可以改变胶带输送机的启动模式,彻底实现软启动,让机电设备实现平稳运行。变频节能技术还能降低机电设备的发热量,在降低能耗的基础上延长胶带的使用寿命,最终提高胶带输送机的工作效率。
三使用变频技术改善
各电路元件间的逻辑关系,优化电路变频器由键盘、电机、电源板、控制主板等构成,结构相对复杂。采用变频节能技术改善电路元件之间的逻辑关系,不仅可以优化电路,为煤矿机电设备提供适宜的运行环境,而且能够在一定程度上延长煤矿机电设备的使用寿命。变频节能技术实现这一功能的关键在于通过IGBT等功率开关器件以及PWM控制技术,实现从交流到直流再到交流的转换。变频器电路一般包括主电路和控制电路两个部分,主电路的正常运行需要控制信号配合。通常电压检测电路会设置一个电压上限值,如果检测到的直流母线电压超过该上限值,电压检测电路便向变频器发出控制信号,使变频器的过压保护启动。
四结语
综上所述,通过改进压频比控制模式、根据负载合理选择变频器与电机、改进四象限变频器、使用变频技术改善各电路元件间的逻辑关系等策略,可以有效实现煤矿机电设备的技术改造。总体来看,变频技术也并非完美,比如存在噪声和振动比较大、应用成本比较高等问题,但整体来看,变频技术在我国煤矿机电设备的改造中具有很大的应用空间。