数学建模论文【最新3篇】

在平时的学习、工作中,大家肯定对论文都不陌生吧,论文是我们对某个问题进行深入研究的文章。写论文的注意事项有许多,你确定会写吗?以下是人见人爱的小编分享的数学建模论文【最新3篇】,希望能够帮助到大家。

数学建模论文模板 篇1

一、小学数学建模

"数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位

1、定位于儿童的生活经验

儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2、定位于儿童的思维方式

小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。

三、小学"数学建模"的教学策略

1、培育建模意识

当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释"。培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

2、体验建模过程

在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。

3、在数学建模中促进自主性建构

要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。

四、总结

数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

数学建模论文格式 篇2

论文标题:xxxxxxx

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设!也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。注意:

①变量说明要全即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的。写法

比如:一般表示圆周率;cba,一般表示常量、已知量;zyx,一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1、建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2、模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3、求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4、求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5、模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。因为你的结果往往是数学的结果,一般人无法理解。你必须归纳出你的结论和建议。这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号]作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号]作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。应包括:

①某一问题的详细证明或求解过程;②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

数学建模论文模板 篇3

摘要:不知不觉中,数学建模已经成为在学生中一个非常热门的名词随着各类数学建模大赛的如火如荼,数学建模的概念已经逐步走入到我们中学生的视线中。很多同学对于数学、对于数学建模的理解还存在着很多偏颇之处,认为数学这门学科太过深奥,比较难以学习领悟透彻,本文通过自身的理解,简要介绍了数学建模的概念与过程,体现了数学思想在问题解决过程中的指导作用,同时揭开数学建模的神秘面纱,让数学以更加平易近人的方式成为我们数学的工具。

关键词:数学建模;过程;应用

数学是一门高度的抽象并且严密的科学这没错,但是同样的数学中的许多结论与方法,我们可以很好的应用在生活中的方方面面。数学应该是理工科学生最重要的一门基础学科,然而我们大部分的同学,甚至我自己常常都会有“不知道学了数学有什么用,学会了微分与导数日常生活也用不到”的困惑,除了备战考试,“学而无趣”、“学而无用”的现象还是非常明显的。但是伴随着现代社会的高速发展,我们所掌握的科学技术水平也在稳步提高,数学本身的发展也是日新月异。时至今日,数学在其他各个学科之中的应用已经显得尤其重要。如何通过灵活的应用所掌握的数学知识去解决各类生产生活中遇到的实际问题时,建立合理地数学模型就成为至关重要的一点。

一、数学建模的概述

人们在对一个现实对象进行观察、分析和研究的过程中经常使用模型,如科技馆里的各类机械模型、水坝模型、火箭模型等,实际上,我们常常接触到的照片、玩具、地图、电路图实验器材等都是模型。通过使用一定的模型,可以能够概括、集中以及更直观的反映现实对象的一些特征,进而可以帮助人们迅速、有效地了解并掌握所研究的对象。而随着现代计算机技术与理论的日渐成熟,以及我们研究对象逐步复杂化、抽象画,可以通过计算机模拟的数学模型应运而生。其实数学模型不过是更抽象些的模型,而数学建模就是建立这一模型的过程,并且能够将建模后计算得到的结果来解释实际问题,同时接受实际的检验。当我们需要对一个实际问题从定量的角度分析和研究时,就需要通过深入调查研究、了解对象信息,并作出作出简化假设、分析内在规律,然后用数学的符号和语言,把这一问题表述为数学式子即为数学模型。这一数学模型再经过反复的检验和修正最终得到的模型结果来解释实际问题,并且可以接受实际的检验。当今时代,数学的应用已经不仅局限在工程技术、自然科学等领域,并以空前的广度和深度向环境、人口、金融、医学、地质、交通等崭新的领域渗透,形成了所谓的数学技术,并成为现代高新技术的重要组成。这其中,建立研究对象的数学模型并计算求解成为首要的和关键的步骤。数学建模和计算机技术在知识经济时代为科学研究提供了重要的帮助。

二、数学建模的过程

数学建模的过程可粗略以上方框图表示,其具体步骤可以概述为:1)通过分析问题的实际情况,可以充分了解所面临问题的背景,去大胆分析并且暴漏出问题的本质,针对研究对象提出问题。2)忽略非主要因素,直接列出研究的对象的关键问题。将复杂问题简化,抓住关键点,大大提高问题解决的效率。3)通过应用数学公式与理论,寻找客观规律。必要时可以借助计算机软件,形成合适的数学模型。4)通过运作已建立的数学模型,产生结果,进而通过结果的对比判断所建立的数学模型是否真正符合实际的客观规律。这是一个动态的检验、修改的过程,通常需要多次的模拟和完善才能够建立起合理有效的数学模型。5)将建成的数学模型规律转化为解决实际生活中的各种问题的方法,进而可以直接或间接地提高生产、生活效率。数学建模其实就是连接数学理论知识和数学实际应用两者之间的一条纽带。总有一些同学将数学建模看得多么的高深莫测,其实我们在以前的日常的学习中早就已经接触过了数学建模。现在经常被我们当成搞笑段子来讲的一些小学学习数学的阶段做过的很多应用题,实际就是一种简单的数学建模。数学建模的确切的含义目前尚无定论,但比较莫忠一是的看法为:通过将实际问题的抽象化,归纳并简化问题,进而确定变量跟参数,运用数学的理论和方法,逐步确立比较合理的数学模型;然后再应用数学与其他相关学科中的理论和方法借助计算机等相关技术手段,建立起数学模型;接着我们会对此模型进行反复地验证,分析讨论,不断地对其进行修正,逐渐地改进使它更加的规范化。简单来说,数学建模就是以现实作为背景,用数学科学理论作依托,解决实际生产生活中问题的过程。因而,可以说我们所熟知的任何一个数学上的概念、定理、命题或者结构,都可以看作是数学模型。

三、数学建模的应用与总结

进入计算机技术引领的20世纪,随着电子计算机的出现与飞速发展,数学以前所未有的广度和深度向各个领域渗透,而数学建模正是这其中的纽带。在统工程技术领域诸如机械、电机、土木、水利等方面,数学建模已展现了其重要作用。建立在数学模型和计算机模拟基础上的新型技术,已经凭借其快速、经济、方便的优势,大量地替代了传统工程设计中的现场实验和物理模拟等手段。高科技时代下的技术本质上已经成为一种数学技术,源于支撑现代科技的计算机软件是数学建模、数值计算和计算机图形学相结合的产物在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。

一键复制全文保存为WORD
相关文章