随着我国高等院校大范围的扩大招生,学生的个体差异和数学基础的差别越来越大,而作为高等学校的重要基础课程的《高等数学》的教学改革也正在进行研究和探讨之中。这次为您整理了高等数学论文范文【优秀5篇】,希望能够帮助到大家。
高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。然而,高等学校扩大招生后,我国的高等教育已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、爱好及发展方向各不相同。而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。这种统一的教学模式严重阻碍了高等数学
教学质量的进一步提高。目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对教学方法、教学内容的不同需求。因此,根据学生的数学成绩、兴趣爱好、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。
分层教学取得了一定的成效,较之08级以前不实施分层教学的学生成绩,不及格率有了较大幅度的降低。60-69,70-79分数段的人数有显著增加,而90分以上的优秀率有小幅增加,平均分明显提高。成绩分布呈正态分布。由此可见,分层教学符合大多数学生的愿望和要求,应当坚持和完善。分层教学有的放矢,因材施教,可以提高学生的学习兴趣,降低因学科本身的抽象枯燥造成的负担。使一些对数学没有信心,失去学习兴趣的学生达到了大纲的要求,较好解决了大学生数学学习两级分化太大的矛盾。08级以后的学生对分层次教学的认可度越来越高,适应数学学习的能力和学习数学的信心也大大地增强。实践证明,分层教学保证了面向全体学生,因材施教,做到了优等生吃得饱,中等生吃得好,差等生吃得了,同时,减轻了学生的课业负担,是全面提高教学质量和实施素质教育的行之有效的途径。虽然分层教学的实施使高等数学教学各方面有了大的改进,但是还有一些问题亟待解决。比如不同自然班的学生在同一个授课班上数学课,这就给课堂和作业管理造成了一定的难度,对教师和辅导员提出了新的要求。另外,考试过后需要将学生成绩按自然班排名,也造成了一些麻烦。我们的工作还仅仅是一个开始,今后将在实践中不断完善分层教学的教学方式,比如,在考核学生成绩方面,可以考虑不仅依据笔试的卷面成绩,再兼顾其它形式的考核成绩;在教学过程中,可适当借助计算机进行多媒体教学,以提高学生的学习兴趣。
分层教学的理论基础是美国心理学、教育学家布鲁姆
(B.S.Bloom)掌握学习理论。布鲁姆认为:只要在提供恰当的材料和进行教学的同时,给每个学生提供适度的帮助和充分的时间,几乎所有的学生都能完成学习任务或达到规定的学习目
标。掌握学习理论要求教师的教学应根据学生的实际发展水平、学习方式和个性特点来进行。而一般高校的生源来自全国各个省市地区,近年来的高校扩招也造成了生源质量的下降。这就造成了学生的数学水平参差不齐,差异较大,而分层教学可以较好得体现上述思想。分层教学法还以多元智力理论为基础,尊重学生的个性差异,重视个性发展,遵循因材施教的原则,以学生的发展作为教学的出发点和归宿,真正体现以学生发展为中心,以社会需要为方向,以学科知识为基础的教育改革要求,也能真正体现素质教育的精神内涵。另外,其实在我国古代,教育家、思想家孔子就已经提出育人要深其深,浅其浅,益其益,尊其尊,即主张因材施教,因人而异。也就是说,教师的教,一定要适合学生的学。
[1]阳妮。大学数学分层教学的理性思考[J]。高教论坛,2007.(5):87-89.
[2]郑兆顺。新课程中学数学教学法的理论与实践[M]。北京:国防工业出版社,2006.
[3]郭德俊,李原。合作学习的理论与方法[J]。高等师范教育研究,1994,(3):43-54.
[4]付海峰。在层次教学中培养学生的思维能力[J]。中学数学参考,1997,(10)。
[摘 要]本文对高等数学与初等数学教学中有关函数与极限内容的衔接问题进行了分析和讨论,并给出了解决相关问题的一些教学建议。
[关键词]高等数学 初等数学 教学内容 衔接
高等数学是高等院校绝大多数专业的一门重要公共基础课。一方面,高等数学为后继课程和解决实际问题提供必不可少的数学基础知识及常用的数学方法;另一方面,学生通过学习高等数学,可逐步培养具有初步抽象概括问题的能力,一定的逻辑推理能力、比较熟练的运算能力、综合运用所学知识分析问题和解决问题的能力。
在高等院校中,各个学科门类所开设的专业课程,相对于中学所开设的课程而言,分类更细化,研究内容更丰富,研究方法更新颖,使用的工具更先进。尤其对于高等数学课程,研究的对象和采用的工具特别是思维方法等较初等数学都有较大的变化,同时,教学信息量大大增加。所以,对于初学高等数学的学生来讲,普遍感觉到高等数学难学,难就难在高等数学与初学数学的衔接出现“台阶”。
2003年3月教育部颁发的《普通高级中学数学课程标准》出台之后,新出版的高中教材与以前的教材相比,一个重要的特点是新教材进一步加强了高中数学与大学数学的联系,高中教材中安排了大学数学课程里的一些基本概念、基础知识和思维方法。比如,在人教版的高中数学新教材中,编入了一元函数的极限与导数、概率论与数理统计以及线性规划等的部分内容,试图从教学内容方面解决高中数学与大学数学的衔接问题。
目前,虽然各个高校也在不断进行改革和加强内涵建设,例如,建设精品课程和打造优秀教学团队等,但是,对高中数学教材内容的新变化尚没有给予充分考虑,大学数学与高中数学教材内容的衔接上还存在不少问题,例如,大学数学与高中数学交叉重复的内容增多,而有些内容却仍然存在脱节或空白。这些问题影响了大学数学课程的教学质量,对大学新生尽快适应大学数学学习形成了障碍。大学数学与初等数学教学内容的有效衔接是高等学校数学教师亟待解决的问题之一。
就高等数学与初等数学教学内容的衔接方面而言,在高等数学课程的许多教学内容里均有体现。下面主要就“函数与极限”这部分内容给出分析比较与教学建议。
1、函数
函数及其初等性质是初等数学讨论的主要内容之一。特别是对于一些简单函数,如一次函数、二次函数、特殊的幂函数、指数函数、对数函数和三角函数等,中考或高考对正确理解和运用它们的初等性质以及熟练地进行初等运算等方面的要求都比较高,学生掌握得也比较牢固。高等数学则是以函数为主要研究对象,以函数的微分、积分为主要研究内容。高等数学教材在有关函数的初等性质方面对学生的要求,除了初等数学中的那些基本要求之外,又提出了更多、更高的要求。高等数学教材中所涉及的函数内容较初等数学教材也更加丰富。
与高中数学教材类似,高等数学教材在介绍函数概念之前,首先介绍集合概念及其运算,然后引进映射的概念。集合论是近、现代数学的基石,而映射是近、现代数学最基本的概念之一。在介绍集合与映射的基本内容之后,函数概念便顺理成章地作为一类特殊的映射被引进。高等数学和高中数学将函数作为一类特殊的映射,比初中数学对函数概念的刻画更加严格和深刻,其内涵也更为丰富。与现行的高中数学教材不同的是,高等数学教材除引进映射的概念外,还介绍了逆映射和复合映射的概念。另外,初等数学中很难见到的一些函数,如符号函数、取整函数、狄利克雷函数、黎曼函数等,在高等数学中经常被提及和研究。高等数学教材中还增加了函数的有界性、基本初等函数和初等函数等概念,介绍了双曲函数和反双曲函数的概念及有关内容,对反函数和复合函数等内容的要求有所提高,对一些基本初等函数如幂函数、反三角函数等的要求也有所提高。例如,现行的高中数学教材仅对反正弦函数、反余弦函数和反正切函数的概念作了简要介绍,并且只要求学生会用这些反三角函数表示“非特殊角”即可,而对它们的初等性质和图像特征以及对反余切函数、反正割函数和反余割函数的相关内容等都未作要求。
教学建议:根据高等数学与初等数学对函数内容要求的不同,在高等数学教学中,应简要复习集合和映射的概念及相关运算,并把函数概念及有关性质作为映射的特例进行简要回顾,而把逆映射与复合映射、反函数与复合函数的概念及有关内容作为重点进行讲述和介绍。高等数学教学对初等数学中不太涉及的符号函数、取整函数、狄利克雷函数、黎曼函数等内容应作详细介绍,对一般的幂函数和反余切函数、反正割函数、反余割函数以及双曲函数、反双曲函数的概念、性质及图像也应作较为详细的讲解,而对初等数学中已重点讨论的二次函数、特殊幂函数、指数函数、对数函数、三角函数和反三角函数等的单调性、奇偶性和周期性等初等性质只需作简要介绍甚至一笔带过。高等数学教学还应讲解清楚在高等数学中经常遇到的函数有界性、基本初等函数和初等函数等基本概念。
2、极限
对于数列极限和函数极限的概念,高中教材采用的是描述性定义,而这种定义绝不是数列极限和函数极限的精确定义。高中学生对数列极限和函数极限的描述性定义比较容易理解,因为它们比较形象和直观,对简单数列或函数的极限求法也易于掌握。
数列极限和函数极限的精确定义或称数学定义,是在高等数学教材中采用和“的表述形式给出的。对于数列极限和函数极限的一和”定义,许多大学新生都感到抽象和难以理解。可以说,数列极限和函数极限的和一定义是大学生在高等数学的学习中遇到的第一个难点。关于数列极限和函数极限的其它理论结果和运算性质,如收敛数列和函数极限的性质、无穷小与无穷大的概念与比较、极限运算法则的理论推导、极限存在准则与两个重要极限等,都是高等数学教材重点讲述的内容。
教学建议:高中阶段对数列极限和函数极限的概念及运算的简单介绍,为大学阶段高等数学的进一步学习奠定了形象直观的基础。但在高中数学教学过程中,介绍了数列极限和函数极限的描述性定义之后,应明确告知学生这些并非数列极限和函数极限的精确定义,它们的精确定义或数学定义以及有关数列极限和函数极限的丰富理论结果和运算性质将会在大学的高等数学或数学分析教材中给出。另一方面,大学新生在学习高等数学时,应能很好地回顾高中阶段介绍的数列极限和函数极限的描述性定义,以加深理解它们的严格数学定义,为后续内容的学习奠定扎实的基础。
需要说明的是,关于高等数学与初等数学教学内容的衔接问题,除了函数与极限的有关内容之外,对于一元函数微分学等内容的衔接,也有不少问题值得分析与探讨。另外,高等数学与初等数学的教学内容还存在某些知识点的“断裂”问题,例如,现行的高中数学教材已不再介绍极坐标及有关内容,而大学数学教材则是把极坐标知识作为已知知识对待的。这些问题也是需要亟待解决的问题。
[1]同济大学应用数学系主编。高等数学(第五版上册)
[2]复旦大学数学系陈传璋。金福临。朱学炎。欧阳光中编
[3]人民教育出版社中学数学室编著数学