六年级数学上册知识点通用10篇

数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。那么你知道六年级上册数学知识点有哪些吗?下面是整理的六年级数学上册知识点通用10篇,希望大家可以喜欢并分享出去。

六年级上册数学知识点 篇1

扇形统计图的意义:

1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、常用统计图的优点:

(1)条形统计图直观显示每个数量的多少。

(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

(3)扇形统计图直观显示部分和总量的关系。

数学广角——数与形:

2+4+6+8+10+12+14+16+18+20=(110)

规律:从2开始的n个连续偶数的和等于n×(n+1)。

10×(10+1)=10×11=110

从1开始的连续奇数的和正好是这串数个数的平方。

位置与方向:

1、什么是数对?

数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

数对的作用:确定一个点的位置。经度和纬度就是这个原理。

2、确定物体位置的方法:

(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

相对位置:东——西;南——北;南偏东——北偏西。

数学梯形面积与周长公式:

梯形的面积公式:(上底+下底)×高÷2。

用字母表示:(a+b)×h÷2

梯形的面积公式2:中位线×高

用字母表示:l·h(l表示中位线长度)

另外对角线互相垂直的梯形:对角线×对角线÷2

梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d

等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。

数学分数的加减法知识点:

1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

六年级上册数学课本知识点 篇2

第五单元圆

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心。圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:

围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈3.14。

所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr。

圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

长方形面积=长×宽

所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。

S圆=πr×r=πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4、环形面积=大圆–小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆的半径增加a厘米,周长就增加2πa厘米。

一个圆的直径增加b厘米,周长就增加πb厘米。

6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

7、常用数据

π=3.142π=6.283π=9.424π=12.565π=15.7

六年级数学上册知识点 篇3

扇形统计图:

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

针对练习:

一、我国国土总面积是960万平方千米。下面是我国地形分布情况统计图,请根据统计图回答问题。

1、我国山地面积占总面积的百分之几?

2、各类地形中,什么地形面积?什么最小?

3、你还能得到哪些信息?

4、请算出各类地形的实际面积,填入下表。

地形种类山地丘陵高原盆地平原

面积(万平方千米)

二、小军家2012年11月支出情况统计如下图。聪聪家2012年11月的总支出是3600元。请你回答问题。

1、这个月哪项出最多?支出了多少元?

2、文化教育支出了多少元?购买衣物支出了多少元?

3、购买衣物的支出比文化教育支出少百分之几?

4、你还能提出什么问题?并解决你所提出的问题?

六年级上册数学知识点 篇4

小数

1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

分数

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分子分母是互质数的分数叫做最简分数。

6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

约分和通分

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

数学0的性质

1、0既不是正数也不是负数,而是介于—1和+1之间的整数。

2、0的相反数是0,即—0=0。

3、0的绝对值是其本身。

4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

7、除0外,任何数的的0次方等于1。

8、0也不能做除数、分数的分母、比的后项。

9、0的阶乘等于1。

小学数学运算定律和性质知识点

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(a—b)×c=a×c—b×c或a×c—b×c=(a—b)×c

减法:减法性质:a—b—c=a—(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

数学学习方法与技巧 篇5

一、课内重视听讲,课后及时复习。

课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。

2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的。解题规律。

3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的解题习惯是非常重要的!

三、调整心态,正确对待考试。

1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

六年级上册数学知识点 篇6

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c

②除以小于1的数,商大于被除数:a÷b=c 当ba (a≠0 b≠0)

③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

注:(a±b)÷c=a÷c±b÷c

四、比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20= =12÷20= =0.6 12∶20读作:12比20

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。

(1)、 用比的前项和后项同时除以它们的最大公约数。

(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

5、比和除法、分数的区别:

除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数

比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五、分数除法和比的应用

1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)

2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)

乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)

几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)

(2)甲比乙多(少)几分之几?

A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )

B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )

C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )

D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)

E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)

(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?

方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35

方法二:甲:56× =21 乙:56× =35

例如:已知甲是21,甲、乙的比3∶5,求乙是多少?

方法一:21÷3=7 乙:5×7=35

方法二:甲乙的和21÷ =56 乙:56× =35

方法二:甲÷乙= 乙=甲÷ =21÷ =35

5、画线段图:

(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。

六年级上册数学知识点 篇7

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

四统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。

小学数学图形的变换知识点

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

六年级数学必考难题整理

1圆柱侧面积

1、王师傅用面积是9.42平方分米的铁皮做成了一个长2分米的烟囱(接头处忽略不计)则,这个烟囱的横截面的直径是多少?

解:横截面的周长:9.42/2=4.71(分米)

横截面的直径:4.71/3.14=1.5(分米)

答:这个烟囱的横截面的直径是1.5分米。

2计算整除

2、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75。再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32。故知,修改后的六位数是970425。

3路程问题

3、车队向灾区运送一批救灾物资,去时每小时行80km,5小时到达灾区。回来时每小时行100km,这支车队要多长时间能够返回出发地?

解:80×5÷100=400÷100=4(小时)

答:这支车队要四个小时能够返回出发地。

六年级上册数学知识点汇总 篇8

六年级上册数学知识点有:

1.分数乘法:分数乘法的计算法则为分子相乘的积作分子,分母相乘的积作分母,分母是整数的要化成同分母再相乘。

2.分数除法:分数除法的计算法则为除以一个数等于乘以这个数的倒数。

3.分数乘法、除法的混合运算:运算时按照从左到右的顺序进行,注意运算顺序和结果的符号。

4.百分数:理解百分数的意义,会进行百分数和分数、小数的互化。

5.圆柱的认识:圆柱的两个圆面是面积相等的圆形,侧面可以拼成或者剪成一个长方形,圆柱的高是围成圆柱的曲面之间的距离,底面圆的周长是圆柱的底面周长。

6.圆柱的侧面积、底面积、表面积的公式。

7.圆柱的体积:体积是底面积与高的乘积。

8.比例:比例的概念,比例的基本性质,解比例。

9.正比例和反比例:判断两个量成正比例或反比例的方法是根据两个量的比值(商)或差值(差)是否保持一定的不变来判断,如果是,成正比例或反比例。

以上为六年级上册数学的知识点,具体内容可能因教材、地域、学派等差异而有所出入,具体以教材、教师授课内容为准。

六年级上册数学课本知识点 篇9

第四单元比

比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

连比,如:3:4:5读作:3比4比5。

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20=12÷20=0.6

12∶20读作:12比20。

区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

4、化简比:化简之后结果还是一个比,不是一个数。

(1)用比的前项和后项同时除以它们的最大公约数。

(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

6、比和除法、分数的区别:

除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。

分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。

比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系。

商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数除法和比的应用

1、已知单位“1”的量用乘法。

2、未知单位“1”的量用除法。

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

甲=乙×几分之几

乙=甲÷几分之几

几分之几=甲÷乙

(2)甲比乙多(少)几分之几?

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

5、画线段图:

(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

两个量的关系画两条线段图,部分和整体的关系画一条线段图。

六年级上册数学知识点 篇10

一、填空(16分)

1、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

2、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

3、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

4、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

5、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

6、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

7、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。

8、在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画(__)个,这些圆的面积和是(__)。

二、判断题。(8分)

1、圆的周长是它的直径的π倍。(__)

2、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

3、半径为1厘米的圆的周长是3.14厘米。(__)

4、一个圆的周长是12.56厘米,面积是12.56平方厘米。(__)

5、圆的半径由6分米增加到9分米,圆的面积增加了45平方分米。(__)

6、圆内最长的线段是直径。(__)

7、圆是轴对称图形,它有无数条对称轴。(__)

8、半个圆的周长就是圆周长的一半。(__)

三、选择(9分)

1、3.14(__)π

A、 = B、>C<、 D、能确定

2、当周长相等时,面积的是(__)

A、平行四边形B、长方形C、正方形D、圆

一键复制全文保存为WORD
相关文章