八年级上册数学知识点【8篇】

在日常过程学习中,是不是经常追着老师要知识点?知识点也可以通俗的理解为重要的内容。哪些知识点能够真正帮助到我们呢?这次帅气的小编为您整理了八年级上册数学知识点【8篇】,希望可以启发、帮助到大家。

八年级上册数学知识点 篇1

三角形的外角:

三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

三角形的外角特征:

①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;

②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;

③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。

性质:

①。 三角形的外角与它相邻的内角互补。

②。 三角形的一个外角等于和它不相邻的两个内角的和。

③。 三角形的一个外角大于任何一个和它不相邻的内角。

④。 三角形的外角和等于360°。

设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

定理:三角形的一个外角等于不相邻的两个内角和。

定理:三角形的三个内角和为180度。

八年级上册数学知识总结 篇2

平面直角坐标系

1、平面直角坐标系:(1)在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。

(2)建立了直角坐标系的平面叫坐标平面。x轴和y轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图所示。

说明:两条坐标轴不属于任何一个象限。

2、点的坐标:

对于平面直角坐标系内任意一点P,过点P分别向x轴和y轴作垂线,垂足在x轴,y轴对应的数a,b分别叫做点P的横坐标,纵坐标,有序数对(a,b)叫做P的坐标。

八年级上册数学知识点 篇3

1、函数

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

3、函数的三种表示法及其优缺点

关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法

用图象表示函数关系的方法叫做图象法。

4、由函数关系式画其图像的一般步骤

列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

5、正比例函数和一次函数

①正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+b中的b=0时(k为常数,k不等于0),称y是x的正比例函数。

②一次函数的图像:

所有一次函数的图像都是一条直线。

③一次函数、正比例函数图像的主要特征

④正比例函数的性质

一般地,正比例函数有下列性质:

当k>0时,图像经过第一、三象限,y随x的增大而增大;

当k<0时,图像经过第二、四象限,y随x的增大而减小。

⑤一次函数的性质

一般地,一次函数有下列性质:

当k>0时,y随x的增大而增大;

当k<0时,y随x的增大而减小。

⑥正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式y=kx(k不等于0)中的常数k。

确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b。解这类问题的一般方法是待定系数法。

⑦一次函数与一元一次方程的关系

任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式。而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0)。当函数值为0时,即kx+b=0就与一元一次方程完全相同。

结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式。所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值。

从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值。

经常复习反思作用

在初中数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法等等,要反思自己的错误,找出产生错误的原因,订出改正的措施,只有经常复习,才能牢固掌握知识点,复习是一个重要而又有效的学习方法

数学的意义与价值

数学是研究数量、结构、变化以及空间模型等概念的一门古老而常新的学科,是由计数、计算、量度和对物体形状及运动的观察中产生的。数学的发生和发展经过了漫长的历史阶段,它具有精确性、抽象性、严格性、广泛性等特点,其中抽象是数学与生俱来的特征,导致了它的深邃和睿智。

数学已经一百多个分支,数学的应用已深入到自然科学、技术科学和社会人文科学的各个领域,以及社会生活的各个方面。基础数学的知识与运用更是个人与团体生活中不可或缺的一部分。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

八年级上册数学知识 篇4

圆的认识

圆的定义:

圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

相关定义:

1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。

2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。

4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。

5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。

6 由两条半径和一段弧围成的图形叫做扇形。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。

11圆周角等于相同弧所对的圆心角的一半。

12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

圆的集合定义:

圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。

圆的字母表示:

以点O为圆心的圆记作“⊙O”,读作O”。

圆—⊙ ;

半径—r或R(在环形圆中外环半径表示的字母);

弧—⌒ ;

直径—d ;

扇形弧长—L ;

周长—C ;

面积—S。

八年级上册数学知识点 篇5

数据的收集、整理与描述

一。知识框架

二。知识概念

1、全面调查:考察全体对象的调查方式叫做全面调查。

2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3、总体:要考察的全体对象称为总体。

4、个体:组成总体的每一个考察对象称为个体。

5、样本:被抽取的所有个体组成一个样本。

6、样本容量:样本中个体的数目称为样本容量。

7、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

8、频率:频数与数据总数的比为频率。

9、组数和组距:在统计数据时,把数据按照一定的'范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

八年级上册数学知识点 篇6

第十一章三角形

一、知识框架:

知识概念:

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13、公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:

①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

第十二章全等三角形

一、知识框架:

二、知识概念:

1、基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2、基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5、证明的基本方法:

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

第十三章轴对称

一、知识框架:

二、知识概念:

1、基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

2、基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

八年级上册数学知识点 篇7

1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数

2、平均数

平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。

加权平均数。

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

第七章 平行线的证明

1、平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

也可以简单的说成:

两直线平行,同位角相等;

两直线平行,内错角相等;

两直线平行,同旁内角互补。

2、判定平行线

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单说成:

同位角相等两直线平行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

其他两条可以简单说成:

内错角相等两直线平行

同旁内角相等两直线平行

八年级上册数学知识点 篇8

一、平面直角坐标系:

在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

二、知识点与题型总结:

1、由点找坐标:

A点的坐标记作A( 2,1 ),规定:横坐标在前,纵坐标在后。

2、由坐标找点:例找点B( 3,-2 ) ?

由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

各象限点坐标的符号:

①若点P(x,y)在第一象限,则x >0,y >0 ;

②若点P(x,y)在第二象限,则x< 0,y >0 ;

③若点P(x,y)在第三象限,则x< 0,y< 0 ;

④若点P(x,y)在第四象限,则x >0,y< 0 。

典型例题:

例1、点P的坐标是(2,-3),则点P在第四象限。

例2、若点P(x,y)的坐标满足xy>0,则点P在第一或三象限。

例3、若点A的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。

4、坐标轴上点的坐标符号:

坐标轴上的点不属于任何象限。

① x轴上的点的纵坐标为0,表示为(x,0),

② y轴上的点的横坐标为0,表示为(0,y),

③原点(0,0)既在x轴上,又在y轴上。

例4、点P(x,y )满足xy = 0,则点P在x轴上或y轴上。 。

5、与坐标轴平行的两点连线:

①若AB‖ x轴,则A、B的纵坐标相同;

②若AB‖ y轴,则A、B的横坐标相同。

例5、已知点A(10,5),B(50,5),则直线AB的位置特点是(A )

A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直

6、象限角平分线上的点:

①若点P在第一、三象限角的平分线上,则P( m, m );

②若点P在第二、四象限角的平分线上,则P( m, -m )。

例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。

解:由条件可知:2a+1 +(2+a)=0,解得a = -1,

∴ A(-1,1)。

例7、已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。

解:当在一、三象限角平分线上时,a+1=3a-5,

解得:a=3 ∴ M(4,4)

当在二、四象限角平分线上时,a+1+(3a-5 )=0,

解得:a=1 ∴ M(2,-2)

∴M的坐标为(4,4)或(2,-2)

7、关于坐标轴、原点的对称点:

①点(a, b )关于X轴的对称点是(a , -b );

②点(a, b )关于Y轴的对称点是( -a , b );

③点(a, b )关于原点的对称点是( -a , -b )。

例8、已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于原点的对称点的坐标。

解:由条件得:3a-1=1+a解得:a=1,∴ A(2,2),

∴ A关于原点的对称点的坐标为(-2,-2)。

8、点到坐标轴的距离:

①点( x, y )到x轴的距离是∣y∣;

②点( x, y )到x轴的距离是∣x∣。

例9、点P到x轴、y轴的距离分别是2,1,则点P的坐标可能为?

答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

三、知识拓展与提高:

例10、在平面直角坐标系中,已知两点A(0,1),B(8,5),点P在x轴上,则PA + PB的最小值是多少?

解:作点A(0,1)关于x轴的对称点A(0,-1),连接AB与x轴交于点P,

则AB路径最短,即PA + PB最小。

根据勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。

∴PA + PB的最小值是10 。

如何学好初中数学的方法

多做练习题

要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

课后总结和反思

在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

初中数学有理数知识点

1、有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

“大”减“小”是指绝对值的大小。

2、有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

3、有理数混合运算的四种运算技巧

转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

一键复制全文保存为WORD
相关文章