作为一位无私奉献的人民教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么应当如何写教案呢?这里给大家分享一些关于高中数学教案下载,方便大家学习。问渠那得清如许,为有源头活水来,本页是小编为大家收集的14篇最新高一数学教案全集人教版 高一数学上册教案全套,欢迎阅读,希望对大家有所启发。
(1)会用坐标法及距离公式证明cα+β;
(2)会用替代法、诱导公式、同角三角函数关系式,由cα+β推导cα—β、sα±β、tα±β,切实理解上述公式间的关系与相互转化;
(3)掌握公式cα±β、sα±β、tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
两角和与差的正弦、余弦、正切公式
余弦和角公式的推导
1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)
2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。
4、关于公式的正用、逆用及变用
1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习
2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。
3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。
4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!
5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!
6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!
7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!
8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!
9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的`学生。
10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。
(1)教学重点:圆的标准方程的求法及其应用。
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题。
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程。
[教师引导]由问题三知:圆心与半径可以确定圆。
2.已知圆的方程为 ,求过圆上一点 的切线方程。
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程。
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程。
3.求圆x2 y2=13过点(-2,3)的切线方程。
4.已知圆的方程为 ,求过点 的切线方程。
圆周长、弧长(二)
教学目标 :
1、应用圆周长、弧长公式综合圆的有关知识解答问题;
2、培养学生综合运用知识的能力和数学模型的能力;
3、通过应用题的教学,向学生渗透理论联系实际的观点。
教学重点:灵活运用弧长公式解有关的应用题。
教学难点 :建立数学模型。
教学活动设计:
(一)灵活运用弧长公式
例1、填空:
(1)半径为3cm,120°的圆心角所对的弧长是_______cm;
(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;
(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.
(学生独立完成,在弧长公式中l、n、r知二求一。)
答案:(1)2π;(2)24;(3)60°.
说明:使学生灵活运用公式,为综合题目作准备。
练习:p196练习第1题
(二)综合应用题
例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转。
教师引导学生建立数学模型:
分析:(1)皮带长包括哪几部分(+dc++ab);
(2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?
(3)ab、cd与⊙o1、⊙o2具有什么位置关系?ab与cd具有什么数量关系?根据是什么?(ab与cd是⊙o1与⊙o2的公切线,ab=cd,根据的是两圆外公切线长相等。)
(4)如何求每一部分的长?
这里给学生考虑的时间和空间,充分发挥学生的主体作用。
解:(1)作过切点的半径o1a、o1d、o2b、o2c,作o2e⊥o1a,垂足为e.
∵o1o2=2.1, , ,
∴ ,
∴ (m)
∵ ,∴ ,
∴的长l1 (m).
∵, ∴的长(m).
∴皮带长l=l1+l2+2ab=5.62(m).
(2)设大轮每分钟转数为n,则
, (转)
答:皮带长约5.63m,大轮每分钟约转277转。
说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力。
巩固练习:p196练习2、3题。
探究活动
钢管捆扎问题
已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度。
请根据下列特殊情况,找出规律,并加以证明。
提示:设钢管的根数为n,金属带的长度为ln如图:
当n=2时,l2=(π+2)d.
当n=3时,l3=(π+3)d.
当n=4时,l4=(π+4)d.
当n=5时,l5=(π+5)d.
当n=6时,l6=(π+6)d.
当n=7时,l7=(π+6)d.
当n=8时,l8=(π+7)d.
猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为l=(π+n)d.
证明略。
高一数学教案全集人教版 高一数学上册教案全套篇五
数学教案-圆的周长、弧长
圆周长、弧长(一)
教学目标 :
1、初步掌握圆周长、弧长公式;
2、通过弧长公式的推导,培养学生探究新问题的能力;
3、调动学生的积极性,培养学生的钻研精神;
4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力。
教学重点:弧长公式。
教学难点 :正确理解弧长公式。
教学活动设计:
(一)复习(圆周长)
已知⊙o半径为r,⊙o的周长c是多少?
c=2πr
这里π=3.14159…,这个无限不循环的小数叫做圆周率。
由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?
提出新问题:已知⊙o半径为r,求n°圆心角所对弧长。
(二)探究新问题、归纳结论
教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).
研究步骤:
(1)圆周长c=2πr;
(2)1°圆心角所对弧长=;
(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
(4)n°圆心角所对弧长=.
归纳结论:若设⊙o半径为r, n°圆心角所对弧长l,则
(弧长公式)
(三)理解公式、区分概念
教师引导学生理解:
(1)在应用弧长公式 进行计算时,要注意公式中n的意义。n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
(3)区分弧、弧的度数、弧长三概念。度数相等的弧,弧长不一定相等,弧长相等的。弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧。
(四)初步应用
例1、已知:如图,圆环的外圆周长c1=250cm,内圆周长c2=150cm,求圆环的宽度d (精确到1mm).
分析:(1)圆环的宽度与同心圆半径有什么关系?
(2)已知周长怎样求半径?
(学生独立完成)
解:设外圆的半径为r1,内圆的半径为r2,则
d= .
∵ , ,
∴ (cm)
例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度l(单位:mm,精确到1mm)
教师引导学生把实际问题抽象成数学问题,渗透数学建模思想。
解:由弧长公式,得
(mm)
所要求的展直长度
l (mm)
答:管道的展直长度为2970mm.
课堂练习:p176练习1、4题。
(五)总结
知识:圆周长、弧长公式;圆周率概念;
能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题。
(六)作业 教材p176练习2、3;p186习题3.
【课题名称】
《等差数列》的导入
【授课年级】
高中二年级
【教学重点】
理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。
【教学难点】
等差数列的性质、等差数列“等差”特点的理解,
【教具准备】多媒体课件、投影仪
【三维目标】
了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;
通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;
通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。
【教学过程】
师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:
(1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()
(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?
(3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?
(4)10072,10144,10216,(),10360
请同学们回答以上的四个问题
生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。
师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。
生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.
师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。
生1:相邻的两项的差都等于同一个常数。
师:很好!那作差是否有顺序?是否可以颠倒?
生2:作差的顺序是后项减去前项,不能颠倒!
师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。
等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。
师:有哪个同学知道定义中的关键字是什么?
生2:“从第二项起”和“同一个常数”
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。
两艘轮船在同一时刻驶离河的两岸,一艘从a驶往b,另一艘从b开往a,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?
当两艘渡轮在x点相遇时,它们距a岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度
等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。
不使用任何其他变量,交换a,b变量的值?
分析与解答
a = a+b
b = a-b
a= a-b
某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。
有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到
他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟?”。温斯顿步行了多长时间?
假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。
因此,温斯顿步行了26分钟。
有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;
贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?
贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。
贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。
注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。
一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:
(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。
(2)这四人中没有一人能够兑开任何一枚硬币。
(3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要
付的帐单款额其次,一个叫内德的男士要付的账单款额最小。
(4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。
(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。
(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。
(7)随着事情的进一步发展,又出现如下的情况:
(8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。
现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?
对题意的以下两点这样理解:
(2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。
(6)中指如果a,b换过,并且a,c换过,这就是两次交换。
教学目标
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2、导入 :同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式。
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 下载1 下载2 下载3 下载4 下载5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是( )
圆锥的底面积是10,高是9,体积是( )
(二)教学例1
1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生独立计算,集体订正。
板书:
答:这个零件的体积是76立方厘米。
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积。
(2)已知圆锥的底面直径和高,求体积。
(3)已知圆锥的底面周长和高,求体积。
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(三)教学例2
1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
思考:这道题已知什么?求什么?
要求小麦的重量,必须先求什么?
要求小麦的体积应怎么办?
这道题应先求什么?再求什么?最后求什么?
2、学生独立解答,集体订正。
板书:(1)麦堆底面积:
=3.14×4
=12.56(平方米)
(2)麦堆的体积:
12.56×1.2
=15.072(立方米)
(3)小麦的重量:
735×15.072
=11077.92
≈11078(千克)
答:这堆小麦大约重11078千克。
3、教学如何测量麦堆的底面直径和高。
(1)启发学生根据自己的生活经验来讨论、谈想法。
(2)教师补充介绍。
a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的'直径。
b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。
下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
五、课堂设计
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景,引出“三个一次”的关系
本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。
为此,我设计了以下几个问题:
1、请同学们解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
学生回答,我板书。
2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。
3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。
4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:
①2x-7=0的解恰是函数y=2x-7的图象与x轴
交点的横坐标。
②2x-70的解集正是函数y=2x-7的图象
在x轴的上方的点的横坐标的集合。
③2x-70的解集正是函数y=2x-7的图象
在x轴的下方的点的横坐标的集合。
三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。
(二)比旧悟新,引出“三个二次”的关系
为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。
看函数y=x2-x-6的图象并说出:
①方程x2-x-6=0的解是
x=-2或x=3 ;
②不等式x2-x-60的解集是
{x|x-2,或x3};
③不等式x2-x-60的解集是
{x|-23}。
此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。
学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?
(三)归纳提炼,得出“三个二次”的关系
1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。
2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)
(四)应用新知,熟练掌握一元二次不等式的解集
借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:
例1、解不等式2x2-3x-20
解:因为δ0,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。
下面我们接着学习课本例2。
例2 解不等式-3x2+6x2
课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。
通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。
4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。
(五)总结
解一元二次不等式的“四部曲”:
(1)把二次项的系数化为正数
(2)计算判别式δ
(3)解对应的一元二次方程
(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算δ→三求根→四写解集
(六)作业布置
为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。
(1)必做题:习题1.5的1、3题
(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为p,ax2+bx+c0的解集为m,ax2+bx+c0的解集为n,那么p∪m∪n=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是r,求实数k的取值范围。
(七)板书设计
一元二次不等式解法(1)
本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
数学教案-圆柱和圆锥
圆柱和圆锥
单元教学要求:
1. 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点 :灵活运用知识,解决实际问题。
(一)圆柱的认识
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点 :认识圆柱的侧面。
教学过程 :
一、复习旧知
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)
二、教学新课
1.认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的。高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……
4.教学侧面积计算。
(1)认识侧面的形状。
教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?
(2)侧面积计算方法。
①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。
②得出计算方法。
提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)
(3)教学例1
出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。
三、巩固练习
1.提问:这节课学习了什么内容?
2.做圆柱体。
让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。
3.做“练一练”第3题。
指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。
4.思考:
如果圆柱的底面周长和高相等,侧面展开是什么形状,
四、布置作业
课堂作业 :练习一第2题。
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。
在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。
要特别注意,不加特殊说明,本章不研究重复排列问题。
③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。
导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。
公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:
(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;
(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。
三角函数的诱导公式是普通高中课程标准实验教科书(人教b版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位。
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
诱导公式(三)的推导及应用。
诱导公式的应用。
多媒体。
1. 诱导公式(一)(二)。
2. 角 (终边在一条直线上)
3. 思考:下列一组角有什么特征?( )能否用式子来表示?
已知 由
可知
而 (课件演示,学生发现)
所以
于是可得: (三)
设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。
设计意图:结合学过的公式(一)(二),发现特点,总结公式。
1. 练习
(1)
设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。
(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)
例3:求下列各三角函数值:
(1)
(2)
(3)
(4)
设计意图:利用公式解决问题。
练习:
(1)
(2) (学生板演,师生点评)
设计意图:观察公式特点,选择公式解决问题。
四。课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。
很荣幸大家来听我的课,通过这课,我学习到如下的东西:
1.要认真的研读新课标,对教学的目标,重难点把握要到位
2.注意板书设计,注重细节的东西,语速需要改正
3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作
4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣
5.上课的生动化,形象化需要加强
1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。
2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。
3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。
4.评议者:引导学生通过网络进行探究。
建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。
( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好
( 2)这样子的教学可以提高上课效率,让学生更多的时间思考
( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用
( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来
( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少
( 6)让学生多探究,课堂会更热闹
( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习
( 8)教学模式相对简单重复
( 9)思路较为清晰,规范化的推理
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)
第2单元不等式(8学时)
第3单元函数(12学时)
第4单元指数函数与对数函数(12学时)
第5单元三角函数(18学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第9单元立体几何(14学时)
第10单元概率与统计初步(16学时)
2.职业模块
第1单元三角计算及其应用(16学时)
第2单元坐标变换与参数方程(12学时)
第3单元复数及其应用(10学时)
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 b中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合a和集合b及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对b中之唯一”,而只要是对应就必须保证让a中之任一与b中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让a中元素就对应b中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)