物理学上最著名的十个实验

  在物理学中,有一类特殊的实验,这种实验却可以挑战前人的结论,建立新的理论,甚至引发人们对世界认识的重新思考。小编在这里整理了相关知识,快来学习学习吧!

  物理学上最著名的十个实验

  1、惯性原理

  自从亚里士多德时代以来,人们一直以为力是运动的原因,没有力的作用物体的运动都会静止。直到伽利略提出了下面这一个家喻户晓的思想实验,人们才知道了惯性原理——一个不受任何外力(或者合外力为0)的物体将保持静止或匀速直线运动:

  设想一个一个竖直放置的V字形光滑导轨,一个小球可以在上面无摩擦的滚动。让小球从左端往下滚动,小球将滚到右边的同样高度。如果降低右侧导轨的斜率,小球仍然将滚动到同样高度,此时小球在水平方向上将滚得更远。斜率越小,则小球为了滚到相同高度就必须滚得越远。此时再设想右侧导轨斜率不断降低以至于降为水平,则根据前面的经验,如果无摩擦力阻碍,小球将会一直滚动下去,保持匀速直线运动。

  在任何实际的实验当中,因为摩擦力总是无法忽略,所以任何真实的实验都无法严格地证明惯性原理,这也正是古人没有得出惯性原理的原因。然而思想实验就可以做到,仅仅通过日常经验的延伸就可以让任何一个理性的人相信惯性原理的正确性,这一最简单的思想实验足以体现出思想实验的锋芒!

  2、两个小球同时落地

  仍是受亚里士多德的影响,伽利略之前的人们以为越重的物体下落越快,而越轻的物体下落越慢。伽利略在比萨斜塔上的著名实验人尽皆知,可是很多人不知道的是,其实在这之前伽利略已经通过一个思想实验证明了两个小球必须同时落地:

  如果亚里士多德的论断是对的话,那么不妨设想把一个重球和一个轻球绑在一起下落。由于重的落得快而轻的落得慢,轻球会拖拽住重球给它一个阻力让它减速,因此俩球的下落速度应该会介于重球和轻球下落速度之间。然而,如果把两个球看成一个整体,则总重量大于重球,它应当下落得比重球单独下落时更快的。于是这两个推论之间自相矛盾,亚里士多德的论断错误,两个小球必须同时落地。

  有了上述思想实验,实际上两个小球同时落地就已经不仅是一个物理上成立的定律了,而是在逻辑上就必须如此。在这个例子中,思想实验起到了真实实验无法达到的作用:即便在我们高中所学的牛顿引力理论不适用的情形,两个小球同时落地依然是成立的!后面我会讲到广义相对论中的等效原理,这个思想实验在逻辑上的必然成立是爱因斯坦总结出等效原理的关键因素。

  3、牛顿的大炮

  如图,一门架在高山上的大炮以很高的速度向外水平地发射炮弹,炮弹速度越快,就会落到越远的地方。一旦速度足够快,则炮弹就永远也不会落地,而是会绕着地球作周期性的运动。

  牛顿的这一简单的思想实验,第一次让人们认识到,原来月球不会掉到地上来(也不会飞走)的原因,正是导致苹果落地的引力!牛顿的引力理论促成了人们认识上的一个飞跃:天上的东西并不“神圣”,他们遵循的规律和地上的普通物体完全一致。

  4、水桶实验

  用长绳吊一水桶,让它旋转至绳扭紧,然后将水注入,水与桶暂时都处于静止中,这时显然液面水平。再突然使桶反方向旋转,刚开始的时候水面并未跟随着运动,此时水面仍然水平。但是后来,桶逐渐把运动传递给水,使水也开始旋转,就可以看到水渐渐离开其中心而沿桶壁上升形成凹面。运动越快,水升的越高。倘若此时突然让桶静止,水由于惯性仍将旋转,此时的液面仍为凹面。牛顿认为,水面的下凹,不是由水对周围的相对运动造成的,而是由水的绝对的、真正的圆周运动造成的,因此由水面的下凹就可以判断绝对运动的存在。

  这一思想实验,是牛顿为了论证绝对空间的存在而设计出来的。然而,众所周知,牛顿的绝对时空观其实是错误的,也就是说这一思想实验其实是个失败的例子。这一谬误,在100多年之后才被哲学家兼物理学家马赫所指出。马赫认为,水面的凹陷,并不是由于水相对于“绝对空间”的运动,而是由于相对宇宙间的所有其他物体的运动,这些其他所有物体通过引力对水施加了作用。其中起决定性作用的物体则是遥远的天体,正是遥远的天体的“参考系拖拽”作用使得相对于它们旋转的液面发生了凹陷。马赫认为并不存在绝对空间,所有参考系等价。倘若能够使水面保持静止,而让所有遥远天体一同旋转,按照马赫的观点,静止水面将产生凹液面。我们显然无法做这样的实验,但是如果用几公里厚的水桶做上面的水桶实验,则人们便不能肯定牛顿对液面的平凹的判断了。。后来,马赫的观点对爱因斯坦发明广义相对论产生了决定性的影响,马赫原理本身也随着广义相对论的逐渐证实而得到了广泛认可。

  5、奥伯斯佯谬

  在20世纪的宇宙大爆炸理论提出之前,人们对于宇宙的认识是朴素的:宇宙无限大、存在的时间无限长、宇宙处于稳恒态、宇宙中的星体分布在大尺度上均匀。然而那时的人们不知道的是,从这四条基本假设却可以逻辑地推出与事实明显相悖的结论——奥伯斯佯谬:

  如果宇宙是稳恒,无限大,时空平直的,其中均匀分布着同样的发光体,由于发光体的照度与距离的平方成反比,而一定距离上球壳内的发光体数目和距离的平方成正比,这样就使得对全部发光体的照度的积分不收敛,黑夜的天空应当是无限亮的。

  然而每天的黑夜总是如期降临,天空并不是一直无限亮着。这就说明以前我们对宇宙的认识存在问题。奥伯斯本人给出了一个解释,他认为宇宙中存在的尘埃、不发光的星体吸收了一部分光线。然而这个解释是错误的,因为根据热力学第一定律,能量必定守恒,故此中间的阻隔物会变热而开始放出辐射,结果导致天上有均匀的辐射,温度应当等于发光体表面的温度,也即天空和星体一样亮,然而事实上没有观察到这种现象。直到宇宙大爆炸理论的提出,奥伯斯佯谬才迎刃而解。根据大爆炸理论,宇宙诞生于150亿年前的一个大爆炸,到现在宇宙仍处在膨胀的过程当中,因此,宇宙的存在时间便是有限的,并且并非处在稳恒态。四条基本假设的两条已经不再成立,因此奥伯斯佯谬也自然被瓦解。

  6、拉普拉斯妖

  牛顿之后的时代,经典力学在描述世界上产生了巨大的成功,人们逐渐的相信世界是可以用物理定律机械地描述的。比较极端地,拉普拉斯就相信机械决定论,认为世间万物(包括人类、社会)都逃不过确定的物理定律的掌控。

  “我们可以把宇宙现在的状态视为其过去果以及未来的因。如果一个智能知道某一刻所有自然运动的力和所有自然构成的物件的位置,假如他也能够对这些数据进行分析,那宇宙里最大的物体到最小的粒子的运动都会包含在一条简单公式中。对于这智者来说没有事物会是含糊的,而未来只会像过去般出现在他面前。”——拉普拉斯

  拉普拉斯提到的“智能”,便是后人所称的“拉普拉斯妖”。倘若拉普拉斯妖是存在的,那这个世界也太可怕了:你我的行为全部都可以通过计算得出,我们的命运也全都被物理定律+初始条件严格的定出了,没有什么会是计算之外的,那生活还有什么乐趣可言!幸运的是,混沌理论和量子力学的发展,让拉普拉斯妖永远也不可能存在了。量子力学告诉我们,物理量都是有不确定性的,不可能无误差地精确测量。而混沌理论则表明,只要涉及3个及更多的物体,初始条件的极其微小的差别将导致最后结果的千差万别。从另一个角度来说,拉普拉斯妖是基于经典力学可逆过程的,然而真实的系统确实满足热力学第二定律(熵增原理)的不可逆过程。因此世界仍是充满不确定性充满了惊喜的,人也可以凭借自己的主观努力去改变自己的命运。

  7、麦克斯韦妖

  中学时我们都曾学过热力学第二定律(熵增原理):孤立系统的不可逆过程熵总是在增加。“落叶永离,覆水难收;欲死灰之复燃,艰乎其力;愿破镜之重圆,冀也无端;人生易老,返老还童只是幻想;生米煮成熟饭,无可挽回...”这些都是熵增原理在实际生活中的反应,它现在也已经成为了物理学中最牢不可破的原理之一。然而当年麦克斯韦却曾提出过一个对熵增原理的诘难,非常令人困惑:

  一个绝热容器被分成相等的两格,中间是由“麦克斯韦妖”控制的一扇小“门”,容器中的空气分子作无规则热运动时会向门上撞击,“门”可以选择性的将速度较快的分子放入一格,而较慢的分子放入另一格,这样,其中的一格就会比另外一格温度高,系统的熵降低了。可以利用此温差,驱动热机做功,而这是与热力学第二定律相矛盾的。

  对于这个诘难的反驳,可并不是一件轻松的事情。有人可能以为麦克斯韦妖在打开、关闭门的时候需要消耗能量,这里产生的熵增会抵消掉系统熵的降低。然而开关门消耗的能量却不是本质的,它可以任意降低到足够小。对于麦克斯韦妖的真正解释,直到20世纪才被揭开。关于熵的问题向来比较难懂,因此我直接引用赵凯华先生在《新概念力学·热学》中的话:“麦克斯韦妖有获得和存储分子运动信息的能力,它靠信息来干预系统,使它逆着自然界的方向进行。按现代的观点,信息就是负熵,麦克斯韦妖将负熵输入给系统,降低了它的熵。那么,麦克斯韦妖怎样才能获得所需的信息呢?它必须有一个温度与环境不同的微型光源去照亮分子,这就需要耗费一定的能量,产生额外的熵。麦克斯韦妖正是以此为代价才获得了所需的信息(即负熵)的,这额外熵的产生补偿了系统里熵的减少。总起来说,即使真有麦克斯韦妖存在,它的工作方式也不违反热力学第二定律。”

  8、双生子佯谬

  爱因斯坦的狭义相对论建立了全新的时空观,对于当时的人们来说难以接受。因此自从提出以来,狭义相对论就受到了各种诘难,其中最著名的当属双生子佯谬。但是无论如何诘难,狭义相对论都可以很完美的给出解释,所有的佯谬都被一一化解,研究这些佯谬可以更加深刻的理解狭义相对论的时空观。

  在狭义相对论中,运动的参考系时间会变缓,即所谓的动钟变慢效应。现在设想这样一个情景:有一对双胞胎A和B,A留在地球上,B乘坐接近光速的飞船向宇宙深处飞去。飞船在飞出一段距离之后掉头往回飞,最终降落回地球,两兄弟见面。现在问题来了:A认为B在运动的时候时间变慢,B应当比A年轻;而同样地,在B看来,是A一直在运动,是A的时间变慢了,A应当比B年轻才是。那么兄弟俩究竟谁更年轻呢?狭义相对论是否自相矛盾了?

  事实上,理解双生子佯谬的关键,是要清楚A和B的地位并不对等:两人中只有B经历了加速过程,B在飞船掉头的时候不可避免的要经历一次加速。因此,只有A才是处在狭义相对论成立的惯性系当中,只有A的看法是正确的:当兄弟俩见面时,B比A更年轻。类似的效应已经被精密实验所证实了。其实只要用狭义相对论做详尽的计算,也能够从B的角度理解为什么B比A更年轻,但是这不得不做繁琐的计算,这里就不给出了。至此我们可以放心地说,狭义相对论在这个问题上是没有包含矛盾的。但是出去旅游一圈的双胞胎兄弟居然回来就比较年轻了,这一点可是颠覆了大多数人的世界观的...可是这是事实,不信也得信呀!

  9、等效原理

  在中学里大家都学了质量的概念,然而事实上是有两种不同的质量的:惯性质量和引力质量。惯性质量是F=ma中的m,它是惯性大小的量度;引力质量是F=GMm/r^2中的m,它是引力大小的量度。之所以中学里并不对这二者进行区分,是因为这二者精确地相等。这一事实并不是理所当然的,而爱因斯坦正是通过这一神奇的事实,归纳出了广义相对论的一个基本假设:等效原理。

  设想一个处于自由空间(没有引力作用)中的宇宙飞船,它以a=9.8m/s^2的加速度做加速直线运动。倘若里面的人扔出一个小球,小球由于惯性,将以9.8m/s^2的加速度落地;而这正如一个处于引力场中的惯性系所表现的那样。非惯性系中的惯性力正比于惯性质量,而引力则正比于引力质量。惯性质量与引力质量相等这一事实,导致了惯性力与引力这两种效应无法区分,这就是弱等效原理。爱因斯坦进一步推广,对于一切物理过程(不仅仅是力学过程),自由空间中的加速运动参考系,与引力作用下的惯性系,这二者在原则上完全不可区分,这就是强等效原理。

  “引力场中一切物体都具有同一的加速度,这条定律也可表述为惯性质量同引力质量相等,它当时就使我认识到它的全部重要性。我为它的存在感到极为惊奇,并且猜想其中必有一把可以更深入了解惯性和引力的钥匙。”——爱因斯坦。

  10、薛定谔的猫

  薛定谔的猫恐怕是物理界最著名的一只虚构小动物了,它是量子力学的创始人之一——薛定谔为了说明量子力学并不完备而提出的:

  把一只猫放进一个封闭的盒子里,然后把这个盒子连接到一个包含一个放射性原子核和一个装有有毒气体的容器的实验装置。设想这个放射性原子核在一个小时内有50%的可能性发生衰变。如果发生衰变,它将会发射出一个粒子,而发射出的这个粒子将会触发这个实验装置,打开装有毒气的容器,从而杀死这只猫。根据量子力学,未进行观察时,这个原子核处于已衰变和未衰变的叠加态,猫则处在死和活的叠加态,即“既死又活”(而不是很多人误解的“半死不活”、“要么死要么活”)。但是,如果在一个小时后把盒子打开,实验者只能看到“衰变的原子核和死猫”或者“未衰变的原子核和活猫”两种情况。现在的问题是:这个系统从什么时候开始不再处于两种不同状态的叠加态而成为其中的一种?在打开盒子观察以前,这只猫是死了还是活着抑或既死又活?这个实验的原意是想说明,如果不能对波函数塌缩以及对这只猫所处的状态给出一个合理解释的话,量子力学本身是不完备的。

  薛定谔的猫是物理学家的一个噩梦,它把微观的量子力学效应放大到了宏观的日常生活,使得一切都变得十分诡异。对于薛定谔的猫的解释,涉及到了多种对量子力学的深刻哲学理解,本文就不详述了,如果你想搞清楚这只神奇的猫的命运,那么请到物理学院来学习吧!

  高考物理状语的学习方法

  物理,这是公认的最难的一门学科,因为它不仅建立在数学的基础之上,需要有坚强的数学后盾,还要求同学具备很强的过程分析能力。做物理题,首要的就是进行过程分析,只有把物理过程分析清楚,才能在此基础上进一步解题。如果你没有弄清楚它的来龙去脉,那么你根本无法继续解题,即使算出结果来了,那也肯定是错误的。怎样才能分析清楚过程呢?首先,你应该知道,物理中主要有几个大板块的内容,包括力学、热学、电磁学、光学、声学和初步原子理论,其中办学和电磁学既是重点,又是难点,必须给予充分重视。这两块内容的题目特别灵活,一般不易解答,而且在高考中所占的比例较大,很多同学对此感到头痛,其实只要抓住它的规律,它就会变得容易起来。

  规律的掌握,还是靠平时积累,尤其是在听老师讲课时,你要抓住他的解题思路,并和自己的思路进行比较,看看自己的思路哪些地方是正确的,哪些地方是错误的,从而不断改进自己的思维方式。其次,物理考试中综合题较多,这就要求大家能够把几个板块的内容进行横向联系。大家可能一见到这类题就头晕,总觉得纠缠不清,因为它涉及的内容太多了,不易弄清楚,实际上,解这类题时,要注意把复杂的过程分解为若干简单的过程,再分别对这些简单的过程进行解答,这样,题目的难度就降低了。接下来,我们谈谈画图在物理考试中的重要性.对应于一个物理过程,必存在一个过程图,那么我们在分析物理过程的时候,何不借助于图形的帮助呢?一个清晰明了的过程图,能够帮助我们更清楚地看到整个过程,可以说是解物理题的一大法宝。

  如果我们在平时养成一个良好的习惯,每做一道题,第一步就开始画图,它就能逐渐变成一种习惯性的解题步骤,从而增强你的过程分析能力。最后,还应注意光学、声学和原子理论中一些看似简单而又不被人注意的概念、理论。这些东西虽然简单,但如果你没有真正了解它的内涵,做起题来也会觉得无所适从。相对而言,这部分是比较容易得分的地方,我们只需花不多的时间,就可基本上掌握好,所以,应该花的时间我们不吝啬,争取做到没有知识上的漏洞。


物理学上最著名的十个实验相关文章

1.世上最伟大的十个公式

2.最新十八个有趣的物理小实验

3.2018八年级物理下期中试卷及答案

4.大学物理实验的心得体会

5.做中学物理实验题的区分与解题技巧

一键复制全文保存为WORD
相关文章