六年级数学上册知识点大全

数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。今天小编在这给大家整理了一些六年级数学上册知识点,我们一起来看看吧!

六年级数学上册知识点

分数乘法

(一)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

分数乘法的解决问题

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面

2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。

3、写数量关系式技巧:

(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”

(2)分率前是“的”: 单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

倒数

1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法

(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0, (分母不能为0)

4、 对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

分数除法

一、 分数除法

1、分数除法的意义:

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。

3、 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;

(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、 “ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题

(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”: 单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

2、解法:(建议:最好用方程解答)

(1)方程: 根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

3、求一个数是另一个数的几分之几:就 一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数

或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数

学习数学小窍门

建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

限时训练。

可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。

调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

学数学的用处

第一,实际生活中数学学得好可以帮助你在工作上解决工程类或财务类的技术问题。就大多数情况来看,不能解决技术问题的人不仅收入较差而且还要到基层去从事低等体力劳动,能解决技术问题的人就可以拿高工资在办公室当工程师或者财务人员。

第二,数学可以使你的大脑变得更加聪明,增加你思维的严谨性,另外,数学对你其它科目的学习也有很大作用。

第三,数学无处不在,工作学习中都用得着,例如日常逛街买东西都是和数学有关的,这时候才能体会到学习数学的好处。


六年级数学上册知识点大全相关文章

一键复制全文保存为WORD
相关文章