九年级数学知识点重点总结

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面小编为大家带来九年级数学知识点重点总结,希望大家喜欢!

九年级数学知识点重点总结

一、二次根式

1、二次根式:一般地,式子叫做二次根式。

注意:

(1)若这个条件不成立,则不是二次根式。

(2)是一个重要的非负数,即;≥0。

2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

3、二次根式比较大小的方法

(1)利用近似值比大小。

(2)把二次根式的系数移入二次根号内,然后比大小。

(3)分别平方,然后比大小。

4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

5、二次根式的除法法则:

(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

6、最简二次根式:

(1)满足下列两个条件的二次根式,叫做最简二次根式。

①被开方数的因数是整数,因式是整式。

②被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

8、二次根式的混合运算:

(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

二、一元二次方程

1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3、一元二次方程根的判别式:当ax2+bx+c=0(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

Δ>0 <=>有两个不等的实根;Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根。

4、平均增长率问题——应用题的类型题之一(设增长率为x):

(1)第一年为a,第二年为a(1+x),第三年为a(1+x)2。

(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

数学复习方法

吃透考纲把握动向

在复习中,很重要的一点是要有针对性,提高效率,避免做无用功。在对基本的知识点融会贯通的基础上,认真研究考纲,不仅要明确考试的内容,更要对考纲对知识点的要求了然于心。平时多关注近年中考试题的变化及其相应的评价报告,多层次、多方位地了解中考信息,使复习有的放矢,事半功倍。

围绕课本注重基础

中考重视基础知识,突出教材的考查功能。试题至少有一半以上来源于教材,强调对通性通法的考查。针对这一情况,提醒考生,在剩下的不多的复习时间里,必须注意回归课本,围绕课本回忆和梳理知识点,对典型问题进行分析、解构、熟悉。只有透彻理解课本例题、习题所涵盖的知识重点和解题方法,才能以不变应万变。

针对专题攻克板块

复习中,应加强各知识板块的综合。对于重点知识的交叉点和结合点,进行必要的针对性专题复习。例如,函数是整个中学数学中非常重要的部分,可以以它为主干,与不等式、方程、相似形等结合起来,进行综合复习。

数学答题技巧

统揽全局

发下试卷来写上姓名和考号后就开始先把试卷浏览一遍,看看有啥题型,哪些之前做过,哪些是新的,做到心中有数。然后答题时遵循先易后难的顺序去做。

认真审题

对于考试审题问题一直都是初中生常犯的大问题,在考试中一定高度重视,尤其是数、理、化这些科目,理科类题目分值相对较重,在审题上丢分可谓是最冤的。比如以下说法正确或者不正确,条件告诉的是直径你却看成半径,原题是“—”却做成“+”等等。


九年级数学知识点重点总结相关文章

一键复制全文保存为WORD
相关文章