2022高一数学教案五篇

继晷焚膏:继:继续,接替;晷:日光;膏:油脂,指灯烛。点燃蜡烛或油灯接替日光照明。形容夜以继日地勤奋学习或工作。下面给大家带来一些关于2020高一数学教案五篇,希望对大家有所帮助。

2020高一数学教案1

子集、全集、补集

教学目标:

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点:弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程设计

(一)导入新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知 , , ,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5. , , , , , , , (笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作: 读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例: ,可见,集合 ,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

(2)如果 , ,则 .

例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

如: {0}。不能写成 ={0}, ∈{0}

例2 见教材P8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1) 表示空集;

(2)空集是任何集合的真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么B必是A的真子集;

(6) 与 不能同时成立.

解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确. 与 表示同一集合;

(4)不正确. 的所有子集是 ;

(5)正确

(6)不正确.当 时, 与 能同时成立.

例4 用适当的符号( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设 , , ,则A B C.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二) 全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即A在S中的补集 可用右图中阴影部分表示.

性质: S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

(2)若A={0},则 NA=N-;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用 表示.

注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

例如:若 ,当 时, ;当 时,则 .

例5 设全集 , , ,判断 与 之间的关系.

解:∵

:见教材P10练习

1.填空:

, , ,那么 , .

解: ,

2.填空:

(1)如果全集 ,那么N的补集 ;

(2)如果全集, ,那么 的补集 ( )= .

解:(1) ;(2) .

(三)小结:本节课学习了以下内容:

1.五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)

2.五条性质

(1)空集是任何集合的子集。Φ A

(2)空集是任何非空集合的真子集。Φ A (A≠Φ)

(3)任何一个集合是它本身的子集。

(4)如果 , ,则 .

(5) S( SA)=A

3.两组易混符号:(1)“ ”与“ ”:(2){0}与

(四)课后作业:见教材P10习题1.2

2020高一数学教案2

函数单调性与(小)值

一、教材分析

1、 教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、 教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、 例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

2020高一数学教案3

教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

板书:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则

函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什

么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能

通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;  ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的

单调性。

5.课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,

培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。

2020高一数学教案4

立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2020高一数学教案5

三角函数的周期性

一、学习目标与自我评估

1 掌握利用单位圆的几何方法作函数 的图象

2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3 会用代数方法求 等函数的周期

4 理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”, 周期的求解。

三、学法指导

1、 是周期函数是指对定义域中所有 都有

,即 应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度 与时间 之间的函数关系如图所示

(1)求该函数的周期;

(2)求 时钟摆的高度。

例2、求下列函数的周期。

(1) (2)

总结:(1)函数 (其中 均为常数,且

的周期T= 。

(2)函数 (其中 均为常数,且

的周期T= 。

例3、求证: 的周期为 。

例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,

总结:函数 (其中 均为常数,且

的周期T= 。

例5、(1)求 的周期。

(2)已知 满足 ,求证: 是周期函数

课后思考:能否利用单位圆作函数 的图象。

六、作业:

七、自主体验与运用

1、函数 的周期为 ( )

A、 B、 C、 D、

2、函数 的最小正周期是 ( )

A、 B、 C、 D、

3、函数 的最小正周期是 ( )

A、 B、 C、 D、

4、函数 的周期是 ( )

A、 B、 C、 D、

5、设 是定义域为R,最小正周期为 的函数,

若 ,则 的值等于 (  )

A、1 B、 C、0 D、

6、函数 的最小正周期是 ,则

7、已知函数 的最小正周期不大于2,则正整数

的最小值是

8、求函数 的最小正周期为T,且 ,则正整数

的值是

9、已知函数 是周期为6的奇函数,且 则

10、若函数 ,则

11、用周期的定义分析 的周期。

12、已知函数 ,如果使 的周期在 内,求

正整数 的值

13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的

函数关系如图所示:

(1) 求该函数的周期;

(2) 求 时,该质点离开平衡位置的位移。

14、已知 是定义在R上的函数,且对任意 有

成立,

(1) 证明: 是周期函数;

(2) 若 求 的值。


2020高一数学教案五篇相关文章

一键复制全文保存为WORD
相关文章