高考数学题型占分比重及命题规律

想要在高考数学中取得好成绩,就要多做题型,掌握好一定的技巧,这样才能出成绩。下面是小编整理的高考数学题型占分比重及命题规律,欢迎大家阅读分享借鉴,希望对大家有所帮助。

更多高考相关内容推荐↓↓↓

最实用的高考语文复习技巧

2022高考励志金句100句

高考英语复习八大诀窍

2022高考政治复习攻略

高考数学知识点占分比重

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.

1-12题,满分60分。

二、填空题:本大题共4小题,每小题5分

13-16题,满分20分。

三、解答题:每小题满分12分。解答应写出文字说明,证明过程或演算步骤。

17-21题,满分60分。

22-24题,满分10分。

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号。

(22)(本小题满分10分)选修4-1:几何证明选讲

(22)(本小题满分10分)选修4-4:坐标系与参数方程

(24)(本小题满分10分)选修4-5:不等式选讲

全国卷新课标Ⅰ数学命题规律

1.函数与导数:2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。

2.三角函数与平面向量:小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.

3.数列:2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推为主.

4.解析几何:2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.

5.立体几何:2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标. 几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计:2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.

7.不等式:小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如集合、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。

8.算法与推理:程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理题偶尔会出现一个.

9.选考:几何证明主要考查圆内接四边行、圆的切线性质、圆周角与弦切角等性质、相似三角形、弧与弦的关系、试题分两问,难度不大,图形比较简单,可以考作辅助线,但非常简单; 坐标系与参数方程,主要考查极坐标系与直角坐标系的坐标和方程的互化,在极坐标系下的点与线,线与圆的位置关系;就参数方程而言,主要考查参数方程与普通方程的互化,圆、椭圆、直线参数方程的几何意义,直线的参数方程在直线与圆锥曲线的位置关系中,弦长、割线长等的计算问题。坐标系与参数方程轮换考或结合起来考;不等式近三年主要考查的是解绝对值不等式,但随着参与新课标全国卷的省份的增加,也会考查比较法、综合法和分析法等不等式方法,但柯西不等式、排序不等式等还不会在新课标全国卷里考。

全国卷新课标Ⅱ数学命题规律

1.函数与导数:2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。

2.三角函数与平面向量:小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算;大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.

3.数列:2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推为主.

4.解析几何:2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解.大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题;另外要注意对二次曲线间结合的考查,比如椭圆与抛物线,椭圆与圆等.

5.立体几何:2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意球的组合体.解答题以平行、垂直、夹角、距离等为考查目标. 几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计:2小1大,小题一般主要考查:频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理等几个重要的分布;解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差,仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.

7.不等式:小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如集合、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。

8.算法与推理:程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理证明一般与其它知识结合,不单独出题.

9.选考:几何证明主要考查圆内接四边行、圆的切线性质、圆周角与弦切角等性质、相似三角形、弧与弦的关系、试题分两问,难度不大,图形比较简单,可以考作辅助线,但非常简单; 坐标系与参数方程,主要考查极坐标系与直角坐标系的坐标和方程的互化,在极坐标系下的点与线,线与圆的位置关系;就参数方程而言,主要考查参数方程与普通方程的互化,圆、椭圆、直线参数的几何意义,直线的参数方程在直线与圆锥曲线的位置关系中,弦长、割线长等的计算问题,坐标系与参数方程轮换考或结合起来考;不等式近三年主要考查的是解绝对值不等式,但随着参与新课标全国卷的省份的增加,也会考查比较法、综合法和分析法等不等式方法,但柯西不等式、排序不等式等还不会在新课标全国卷里考。


高考数学题型占分比重及命题规律相关文章

一键复制全文保存为WORD
相关文章