高三数学零基础补习方法有哪些

对于很多高三的学生来说,高考的数学想要拿到高分一直是很多考生的心愿,那么高考数学该如何学习呢?下面给大家分享一些关于高三数学零基础补习方法有哪些,希望对大家有所帮助。

高三数学零基础补习方法有哪些

一、首先构建知识网络。具体的方法是,先看公式,理解、记住,然后看课后习题,用题来思考怎么解,不要计算,只要思考就好,然后再翻课本看公式定理是怎么推导的,尤其是过程和应用案例。

特别注意这些知识点为什么产生的。如集合、映射的数学意义是为了阐述两组数据(元素)之间的关系。而函数就是立足于集合。并由此产生的充要条件等知识点。

对于容易犯的错误,要做好错题笔记,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的,因为盲目大量做题,有时候错误或者误解也会得到巩固,纠正起来更加困难。

对于课本中的典型问题,要深刻理解,并学会解题后反思:反思题意,防止误解;反思过程,防止谬误;反思方法,精益求精;反思变化,高屋建瓴。这样不仅能够深刻理解这个问题,还有利于扩大解题收益,跳出题海!

二、其次专题练习。

具体的方法是:

首先,买一本分类汇编,这本习题册需要具有这几个特点:1,里面至少包括1-2年本省各地级市的高三上学期期末,一模,二模,甚至是三模的题目分类;2,题目答案是详解。

要做这本分类汇编了,先做简单的,比如集合,参数方程,复数,极坐标,简易逻辑等,只会出小题的部分,这些知识点集中,容易短期内提高成绩;然后做中档题,比如,平面向量,概率,立体几何,三角函数等,这些地方既会有小题,也会有答题,但是题目一般不难,经过长期的锻炼后,还是能有提高的;最后就是研究函数,圆锥曲线,导数、数列等部分了,此时要会有舍才能有得,只要第一问,后面得就不要了!

高三数学学习方法总结

一、注重学习策略

学生一定要学会自学考纲,即注重课前复习,看考纲数学要求,做到心中有数。而且在学习数学时,一定要不断巩固,适当重复,举一反三。此外,做题后的反思也很重要,学生要有意识地反思题目考察的知识点,考察的数学方法、数学思想,以及易错的点是什么。切忌钻难、怪、偏题,花无谓的时间,切忌题海战,要提高学习效率。

二、重视“三基”

高考数学学科的考试既考查中学数学的基础知识和方法,又考查考生进人高校继续学习的潜能。因此,既突出对基础知识、基本技能、基本数学思想方法的考察,又强调能力立意,以数学的基础知识为载体,考察学生的数学能力,同时注意考察学生的创新能力。学生在高三的学习过程中要注重“三基”。首先,是基础知识。学生要注重基础知识的积累,能将基础知识全面的掌握和理解。其次,是基本方法,也就是“通法”,最基本的解题方法,以及书本和考纲要求学生掌握的基本方法。最后,就是基本能力。数学的基本能力包括思维能力、运算能力、空间想象能力及分析和解决问题的能力等。高三生在解题过程中一定要思维缜密、有理有据,步骤完整。在立体几何部分,解题时要多运用数理结合、数的运算,要有耐心。

三、梳理基础知识

以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。

高三数学成绩有哪些提高的技巧

仔细研读教材

对于高考的数学来说,高考的出题一直是源自教材的,所以在高三学生复习的过程中,需要认真阅读数学的教材,并且将教材中的知识、概念、例题、等知识点加以分析,在数学的知识点中,有很多知识点网络的交汇处是历年高考的高频考点,想要考好数学的学生可以将数学课本中的知识串成串,连成线,汇成面,并且将高考中出现的各个知识点加以练习并相互结合。

找到适合自己学习数学的方式

每个高三学生的学习情况都不一样,所以针对于他们的训练方式也不同。但是对于训练的目标有很多相同之处。所以在高三学生学习数学备考的时候应该合理安排训练。首先就需要高三学生弄清楚自己的需要,无论是数学的试卷还是专题,都需要自己一点一点来做。并且弄清楚自己那些知识点存在着问题,就要多做一些此类知识点。其次就是要制定一个合理的目标,学习要为了自己的成绩而学,不是为了老师和家长而学习,在做题之前首先要制定一个目标,通过一些训练的方式来提高自己的数学做题的准确率。

确定自己备考的方向

如何才能确定一个属于自己的备考方向呢?首先需要高三学生对于自己的知识点有一定的了解,并且根据知识点归纳出一个考试的方向。例如考生备考函数这一部分的知识点,首先要了解函数的概念和性质,同时,将一些函数部分的重要知识点进行整理。包括(1)函数的定义域与值域;(2)分段函数;(3)函数的解析式与图像;(4)函数的单调性与奇偶性;(5)抽象函数与新定义函数。


高三数学零基础补习方法有哪些相关文章

一键复制全文保存为WORD
相关文章