初中数学年度总结(实用33篇)

初中数学年度总结(通用33篇)

初中数学年度总结 篇1

一、一次函数图象 y=kx+b

一次函数的图象可以由k、b的正负来决定

k大于零是一撇(由左下至右上,增函数)

k小于零是一捺(由右上至左下,减函数)

b等于零必过原点;

b大于零交点(指图象与y轴的交点)在上方(指x轴上方)

b小于零交点(指图象与y轴的交点)在下方(指x轴下方)

其图象经过(0,b) 和 (-b/k , 0) 这两点(两点就可以决定一条直线),且(0,b) 在 y轴上, (-b/k , 0) 在x轴上。

b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。

二、不等式组的解集

1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1 。

2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

A 的解集是 解集 小小的取小

B 的解集是 解集 大大的取大

C 的解集是 解集 大小的 小大的取中间

D 的解集是空集 解集 大大的 小小的无解

另需注意等于的问题。

初中数学年度总结 篇2

各级领导对这次研修给予了高度重视和支持。为做好远程研修培训的组织和管理工作,更有效探讨分散学习教学管理的方法,鹿寨教研室于8月15日下午召开参加远程培训的各学科班主任、简报编写组成员会议,会议讨论并确定了对于XX年年秋季远程研修培训的实施方案和班主任工作要求,并对分散学习过程中的一些细节和可能存在的问题,组织各班主任分组进行深入的探讨,各班主任积极发言,为培训顺利开展献计献策,积极寻求解决问题的办法,在思想上和工作环节上都提出了明确的要求,各班级分4个小组学习,小组长“网上检查,电话督促”的工作方法,为XX年年秋季远程研修培训工作顺利的开展提供了有利的保障。紧接着在8月19日下午,初中0602班40多位学员怀着喜悦的心情聚在实验中学会议室召开了XX年年秋季远程研修培训的动员大会。会上,班主任详细讲解了XX年年秋季远程研修培训的学习目的与要求。随后,学员们进行了充分地交流和讨论,大家分担着存在的困难、分享着能参加这个难得的学习机会的喜悦。最后大家表示,一定会合理安排时间,克服一切困难,做到学习、工作两不误。

在学习过程中,班主任通过上网、电话、聊天等途径及时了解各学员的情况,对存在的问题督促其改正,在后阶段发现有的老师没有按时完成作业,就分别给学校领导打电话督促其完成作业,至学习结束我们班全体学员基本都按规定完成了作业(有三个特例除外—这三个老师由于种种原因已经转到其他科目的培训)。对好的现象给予及时表扬,如罗晓萍老师作为我们班的简报编辑员,在第一阶段结束后,自己觉得自己在简报的编辑中还有一些技术性的知识未掌握好,觉得自己所编辑的简报与别人的还有一些差距,于是联系到上一期的简报编辑,利用暑假最后两天时间不远几十公里赶到县城向那位老师请教,回到家后还自己不断地练习排版、编辑图片等等,正是有了她的不懈努力,我们班的简报才能多次进入课程简报中的简报揽胜。

指导老师梁华亮老师在研修过程中,对我们学员的作业及时的批改和鼓励,促使我们班的学员学习热情一直高涨。因此整个学习过程中,我们学员尽管遇到了诸多困难,如停电、电脑上不了网、电脑不够用、遇上上级的各种检查、出差等等,但我们的学员都能想尽办法解决,有的从乡下专程到县城上网学习,有的白天没办法进行学习,就利用深夜时间进行学习,有的甚至买电脑上网专程为远研学习,研修学习已经成为我们生活的.一部分,正如陶玉莲老师在班级交流中说到“越是缺少监督的学习,越是真正意义上的学习。”学员们种种克服困难的办法和精神真的很令我们感动,其中表现比较突出的有:罗晓萍、冯爱英、邓剑、韦水兰、陆汉华等。

正因为有了领导的重视和支持,班主任的跟踪学习,学员们的主动,在研修专家的指导下,我们班的学员在理论知识、学习状态、教学技能上等方面都有了很大的收获,多次得到专家组的好评。在这个知识舞动的平台上,我们所有参加研修的学员们累并快乐着!我们的目标只有一个:为了孩子的明天!

在此我代表我们广西鹿寨县初中数学0602班全体学员对新课程学科远程研修课程团队的专家们表示衷心的感谢!我们鹿寨初中数学教育一定会因为有你们的指导而更精彩!

初中数学年度总结 篇3

最简单的解释就是,不等式是指用不等号可以将两个解析式连接起来所成的式子。

1.概念:在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

2、分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)

“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

我们大家在判定不等式时要记得,在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。

初中数学年度总结 篇4

一、全新的研修,全新的体验。

20xx年xx月xx日,全省一百多名数学教师齐聚济南,开展为期10天的集中加分散的研修学习。

晚上的破冰活动,使每一个人都能感觉到,这100名教师都是全省初中数学界最优秀的代表。这其中有多位齐鲁名师、山东优秀教师、山东创新人物、全国优秀教师、全国课改实验先进教师,更不乏山东教学能手、山东省特级教师、省优质课一等奖获得者等等,很多教师不仅在数学上赫赫有名,也有很多班级管理方面的省级专家。后面的研修,也进一步证明了这是一个扎实务实的教师团队。

各级培训,越来越科学、务实,越来越需要耗费精力,这大家都是早有心理准备的。但本次培训中精力付出之大,还是远远超过了每一个人的预期。对于我来说,很渴望听到专家醍醐灌顶是的指点,也很希望学习别人先进的经验。但开始培训后,却没有和我想象的一样——听报告和观摩优秀课例,而是从一开始就在做任务培训。整个培训都是围绕着一个课例打磨展开和结束的。“三次备课、两轮打磨、4段视频制作、多个文本撰写”,从问题选择到问题澄清,从课例选择到基于研究主题的一次次策划,从教学设计的不断完善到课堂观察量表的细细斟酌,从课堂前台的关注到背后理论的不断深入,从任务分担到共同完成制作。一个不一样的研修,使我们感受到了很多从未有过的体验,给了我们许多不一样的思考和震撼。

二、艰巨的任务,共同的成果。

这次研修,是一次基于提高校本研修实效性的体验式的范例学习,这次研修,是一次基于任务完成的研修。

29日上午,高研班举行了简短而又隆重的开班典礼。齐鲁师范学院副院长陈小言、山东省中小学师训干训中心主任毕诗文、副主任刘文华、省中小学教师远程研修项目执行主任蒋敦杰、山东省中小学教师远程研修初中项目主任梁承锋和省基础教育课程研究中心副主任李红婷教授等领导和专家出席了本次高研班开班仪式。开幕式上,专家和领导就明确的指出这次高级研修班的任务是为xx年全省初中数学教师全员远程研修开发课例资源。

开幕式只有20分钟,很快就进入了任务培训状态。专家的报告大多是指向如何开展工作的,第一天培训就显示了任务的紧张。上午蒋教授的报告《教师研修转型与省骨干高级研修》到12点,下午首都师范大学王尚志教授《初中数学教学几个问题》到5:30,晚上梁承锋教授《xx初中骨干教师高级研修目标任务与课例研究变式应用》到了10:30尽管专家们都在强调如何开展工作,如何重要和辛苦,我们还是没有进入状态。但王尚志教授的报告,让大家很兴奋,他探讨的问题很实在,和一线教师的思考很接近,我们大多数人都不是第一次听王教授的报告,但看得出这次报告还是给大家带来了很多思考和收益。而且后续的工作证明,王尚志教授的报告给大家的`工作起了很好的指导作用。

第二天上午首席专家李红婷教授为大家作了题为《课例研究问题与研究任务——以“课例打磨”为载体的教学改进思路》的报告,李教授从教师培训方式的转型、专家型教师的成长路径、课例与课例设计、课例研究问题与研究问题、观课与评课等几个方面作了深入的解读。下午两位参加过课例研修教师的现身说法,让大家不但明白了基本流程和思路,也意识到了责任之大和任务之重。

伴随着两天的报告,是大家对关注问题的讨论和澄清。很快,我们六个组各自确定了自己的研究主题,并进行了去伪存真式的剥离和澄清,并撰写了各自的研修计划。首席专家李红婷教授的指导是非常重要的,而且贯穿任务全过程。李教授的指导具体、清楚,高屋建瓴而且不厌其烦,从早上到深夜,还处理着一些其他的工作,给大家带来了很大的感动。

更多的时间留给了以小组为单位的工作团队。我们小组由16位教师组成,有四位来自滨州,有三位来自东营,有九位来自烟台。其中由来自烟台市芝罘区教科研中心的林光老师任组长,由来自滨州市北镇中学实验初中部的邢成云老师和莱州市实验中学张延芳老师任指导老师,由来自东营市育才中学的刘江老师任组内专家,根据工作需要,组内又分为4个任务小组。

每一项任务都被分解为几个部分来讨论和撰写,然后再合成讨论,再经指导教师、组内专家把关后,再提交李教授审核,然后再审核定稿。课例打磨计划的制定,让大家完全进入了工作状态,也了解了理论研究、行动研究和载体呈现的重要性。授课任务由烟台三中分校的曲晓媛老师承担,她自我封闭了一天进行独立一备,其他人则对a视频脚本进行了细致的研讨,为便于在网络上呈现这个递进的过程,我们进行了录音和会议记录,想保持这个课例打磨的真实过程。在二备的过程中,大家各抒己见,充分讨论,很快达成了共识,二备很顺利,b脚本也很顺利完成了第一稿。

第一段集中研修,7天很快结束了。我们才发现自己的节奏是那么紧张。基本上是房间、餐厅和工作室,每天从早上到深夜。多数人连楼也没有走出去。第二阶段是分散研修和录课的时间。但每天大家还是第一时间上网交流和学习。尽管录课是在烟台,大家还是克服困难参加了实地的课堂观察。

12月21日,大家重聚济南,进行了观课交流,录制b视频和d视频,完成了网络记录和呈现任务,并撰写了课例学习导引等,最终一个完整的课例打磨资源,在大家的共同努力下顺利完成。

回顾整个过程,我们不得不说,每一项工作成果无不都是大家共同智慧的结晶。每个小过程,我们组内都进行详细而明确的分工,而且这种分工特别重视彼此的互助性。每位教师都非常积极认真的完成各自的任务和协助任务。任务是艰巨的,但结果也是令人振奋的。

三、不同的体会,共同的收获。

(一)这次研修,给了大家太多的感慨。

教学设计、上课、听课、评课本是教师最经常的工作,却因没有明确的问题引领,没有客观的观察统计,没有必要的理性思考,没有更深一步的行动和理论跟进,使我们的校本研修摆脱不了低效的困境,也浪费了老师们的时间,也使得大家的水平和课堂教学质量得不到提高。

聚焦问题,不仅需要理论的学习和思考,更需要真实、客观和科学的关注,更需要行动研究和逐步的跟进践行,在坚决问题中,成长自己,促进学生。

(二)这次研修,给了大家太多的感动。

参加研修的教师,大多是学校里的中坚力量,身兼多职,但大家对待这项工作,无不尽心尽力,尤其在当讨论的时候,都愿意把自己的观点拿出来,与别人分享,阐述自己的理由。彼此真诚的交流,常让人有无声处闻惊雷的感觉。与会的工作人员,也都尽可能的为别人服务。各位专家,尤其是李红婷教授更是耐心指导,精益求精。可以说,研修中,每一个人感动着别人的同时,也被别人感动着。雅斯贝尔斯说:“教育就是一朵云推动另一朵云,一棵树摇动另一棵树,一个灵魂唤醒另一个灵魂。”研修也正是这样。

我们有理由相信,教育战线上不乏执着的追梦人,不乏具有高尚情怀和追求的教育工作者。

(三)这次研修,给了大家太多的收获。

虽然整个研修,都是围绕任务展开的。但服务他人的同时,更成就的是自己。在课例打磨的过程中,每一位教师都有自己的收获。有的开阔了思路,有的提升了理论,有的净化了心灵。同时,也结交了很多业内同行。其实,同伴的交流是最大的财富。

有一种收获,可以穿透时空,长久的留在记忆里,那就是精神的成长和彼此的感动。

(四)这次研修,给了大家更多的思考。

日常教学研究,应该聚焦于教学有关的各类现实存在的问题,应该注意反复开放和聚焦,在解决和研究中,不断提出新的问题和实际的行动跟进研究。

我们感觉到,广大的一线教师都是有强烈的教育责任感、使命感和教育情怀的,对教育教学的追求是大家共同的心愿。通过本次高研班研修,我们认识到其实大道至简,道不远人。

让我们扎根校本,借助课例打磨,以客观、现实的视角,以理论学习和行动跟进为切入点,来提高我们的教育能力,提升我们的教育智慧吧。

初中数学年度总结 篇5

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理三角形两边的和大于第三边

16、推论三角形两边的差小于第三边

17、三角形内角和定理三角形三个内角的和等于180°

18、推论1直角三角形的两个锐角互余

19、推论2三角形的一个外角等于和它不相邻的两个内角的和

20、推论3三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS)有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1在角的平分线上的点到这个角的两边的距离相等

28、定理2到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1三个角都相等的三角形是等边三角形

36、推论2有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1关于某条直线对称的'两个图形是全等形

43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48、定理四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理n边形的内角的和等于(n-2)×180°

51、推论任意多边的外角和等于360°

52、平行四边形性质定理1平行四边形的对角相等

53、平行四边形性质定理2平行四边形的对边相等

54、推论夹在两条平行线间的平行线段相等

55、平行四边形性质定理3平行四边形的对角线互相平分

56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58、平行四边形判定定理3对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60、矩形性质定理1矩形的四个角都是直角

61、矩形性质定理2矩形的对角线相等

62、矩形判定定理1有三个角是直角的四边形是矩形

63、矩形判定定理2对角线相等的平行四边形是矩形

64、菱形性质定理1菱形的四条边都相等

65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1四边都相等的四边形是菱形

68、菱形判定定理2对角线互相垂直的平行四边形是菱形

69、正方形性质定理1正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的

72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理等腰梯形在同一底上的。两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

83、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3三边对应成比例,两三角形相似(SSS)

95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2相似三角形周长的比等于相似比

98、性质定理3相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理不在同一直线上的三点确定一个圆。

110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理圆的切线垂直于经过切点的半径

124、推论1经过圆心且垂直于切线的直线必经过切点

125、推论2经过切点且垂直于切线的直线必经过圆心

126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等

128、弦切角定理弦切角等于它所夹的弧对的圆周角

129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180

145、扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148

初中数学年度总结 篇6

通过这段时间的培训学习,使我深刻认识到学习的必要性和重要性。使我认识到当前课改的目的和意义,也使自己对课改有了深刻的认识,也大大提高了自己对本学科的理论素养。现将这次培训体会总结如下:

一、通过研修使我的教学观念得到进一步的更新

有机会来参加这次培训,有机会来充实和完善自己,我自豪,我荣幸。但更多感到的是责任、是压力!回首这次的培训,真是内容丰富,形式多样,效果明显。培训中有各级教育专家的专题报告,有一线教师的专题讲座,有学员围绕专题进行的各种行动学习,还有我回校后的教育教学实践。这次的培训学习,对我既有观念上的洗礼,也有理论上的提高,既有知识上的积淀,也有教学技艺的增长。这是收获丰厚的一次培训,也是促进我教学上不断成长的一次培训。

二、拓宽了视野,开阔了眼界

观看学习视频使我领略到了教育专家和名师的风采,专家和名师的课程深入浅出,鲜活生动的教学案例让我们感到就在自己身边。案例背后的思考与解读,更是让我们深受启发、大开眼界,引起深层次的反思。

远程研修平台上的同行们都在积极努力地学习,看着他们发表文章和评论,我得到了很多的启发和实用性的建议和意见,我为自身的浅薄与不足感到羞愧,认识到加强学习的重要性与紧迫性。远程研修的过程中,我一直抱着向其他老师学习的态度参与,学习他们的经验,结合自己的教学来思考,反思自己的教学。

三、提高能力,完善自我

网上的专业学科学习和听取同行们优秀的示范课使我从根本上改变了我原先的传统教学模式,更给我带来了新的教学观念、教学方式和教学理念。这使我对以往在教学中的困惑豁然开朗,教学思路灵活了,对自己的课堂教学也有了新的目标和方向:首先在课堂的'设计上一定要力求新颖,讲求实效性,不能为了图热闹,活动多多而没有实质内容;教师的语言要有亲和力,要和学生站在同一高度,甚至蹲下身来看学生,充分尊重学生;在课堂上,教师只起一个引导的作用,不可以在焦急之中代替学生去解决问题,要尊重学生的主体地位;教师可以设置问题引导学生,但是不能全靠问题来牵引学生,让学生跟着老师走等。在以后的教学工作中,我也会以高质量的课堂要求自己,不断提高教学能力,完善自我。四、反思不足,努力改进

通过远程研修,使我学到了很多东西,这对我来说是一个极大的提高。同时,我也重新审视自我,更清醒地认识到自己知识的匮乏、浅陋,也看清了过去的自己:安于现状、自满自足,缺乏终身学习的意识,工作中容易被俗念束缚,惰性大,缺少有价值的尝试探索;我深深地感到自己在工作中存在着许多不足,因此,我决定在以后的工作中努力改进:

1、借助远程研修,多学习、多交流,使自己的知识面不断扩大,使自己的业务水平更上一层楼,以更好的适应新课程教学和时代的挑战。

2、教学的艺术不在于传授本领而在于激励、唤醒、鼓舞。新课标的指导下,教什么、教多少、如何教等问题得到了进一步明确。教学的宗旨是要激发学生的学习兴趣。

3、认真备课、上课,合理设计学案、教案,精心设计练习题,有效地进行分层教学,使所有的学生都不掉队,让他们成为真正的智慧型人才。

4、教学方法要灵活多样,在教学中创设生动的知识情景,促进学生知识、能力、智力、情感意志获得尽可能大的发展,提高学习效能。在教学中应该坚持以科学的态度和方法,努力减轻学生负担,尽量让学生消除畏难情绪。让学生明白一个事实,那就是课堂上只要积极大胆的参与了各个教学活动,就是最大的成功和可喜的进步。

5、“爱孩子是教师的天职”,爱是教育的源泉,爱学生就可以给学生一个健康的思想,良好的学习心态,所以,我们都应关心爱护每一位学生,使他们在我们的呵护下茁壮成长。

6、教师每时每刻都要学习,所以,我将在今后的工作之余加强教育理论和教学方法的学习和研究,多读一些有价值的教育书籍,努力提高自己的整体素质。一份耕耘,一分收获,相信在以后的工作中,我会更努力,在学习和思考并没有停止。在今后的工作中努力改善自身,勇敢迎接更多挑战。

初中数学年度总结 篇7

一、全新的研修,全新的体验。

20xx年xx月xx日,全省一百多名数学教师齐聚济南,开展为期10天的集中加分散的研修学习。晚上的破冰活动,使每一个人都能感觉到,这100名教师都是全省初中数学界最优秀的代表。这其中有多位齐鲁名师、山东优秀教师、山东创新人物、全国优秀教师、全国课改实验先进教师,更不乏山东教学能手、山东省特级教师、省优质课一等奖获得者等等,很多教师不仅在数学上赫赫有名,也有很多班级管理方面的省级专家。后面的研修,也进一步证明了这是一个扎实务实的教师团队。

各级培训,越来越科学、务实,越来越需要耗费精力,这大家都是早有心理准备的。但本次培训中精力付出之大,还是远远超过了每一个人的预期。对于我来说,很渴望听到专家醍醐灌顶是的指点,也很希望学习别人先进的经验。但开始培训后,却没有和我想象的一样——听报告和观摩优秀课例,而是从一开始就在做任务培训。整个培训都是围绕着一个课例打磨展开和结束的。“三次备课、两轮打磨、4段视频制作、多个文本撰写”,从问题选择到问题澄清,从课例选择到基于研究主题的一次次策划,从教学设计的不断完善到课堂观察量表的细细斟酌,从课堂前台的关注到背后理论的不断深入,从任务分担到共同完成制作。一个不一样的研修,使我们感受到了很多从未有过的体验,给了我们许多不一样的思考和震撼。

二、艰巨的任务,共同的成果。

这次研修,是一次基于提高校本研修实效性的体验式的范例学习,这次研修,是一次基于任务完成的研修。29日上午,高研班举行了简短而又隆重的开班典礼。齐鲁师范学院副院长陈小言、山东省中小学师训干训中心主任毕诗文、副主任刘文华、省中小学教师远程研修项目执行主任蒋敦杰、山东省中小学教师远程研修初中项目主任梁承锋和省基础教育课程研究中心副主任李红婷教授等领导和专家出席了本次高研班开班仪式。开幕式上,专家和领导就明确的指出这次高级研修班的任务是为20xx年全省初中数学教师全员远程研修开发课例资源。

开幕式只有20分钟,很快就进入了任务培训状态。专家的报告大多是指向如何开展工作的,第一天培训就显示了任务的紧张。上午蒋教授的报告《教师研修转型与省骨干高级研修》到12点,下午首都师范大学王尚志教授《初中数学教学几个问题》到5:30,晚上梁承锋教授《20xx初中骨干教师高级研修目标任务与课例研究变式应用》到了10:30尽管专家们都在强调如何开展工作,如何重要和辛苦,我们还是没有进入状态。但王尚志教授的报告,让大家很兴奋,他探讨的问题很实在,和一线教师的思考很接近,我们大多数人都不是第一次听王教授的报告,但看得出这次报告还是给大家带来了很多思考和收益。而且后续的工作证明,王尚志教授的报告给大家的工作起了很好的指导作用。

第二天上午首席专家李红婷教授为大家作了题为《课例研究问题与研究任务——以“课例打磨”为载体的教学改进思路》的报告,李教授从教师培训方式的转型、专家型教师的成长路径、课例与课例设计、课例研究问题与研究问题、观课与评课等几个方面作了深入的解读。下午两位参加过课例研修教师的现身说法,让大家不但明白了基本流程和思路,也意识到了责任之大和任务之重。

伴随着两天的报告,是大家对关注问题的讨论和澄清。很快,我们六个组各自确定了自己的研究主题,并进行了去伪存真式的剥离和澄清,并撰写了各自的研修计划。首席专家李红婷教授的指导是非常重要的,而且贯穿任务全过程。李教授的指导具体、清楚,高屋建瓴而且不厌其烦,从早上到深夜,还处理着一些其他的工作,给大家带来了很大的感动。

更多的时间留给了以小组为单位的工作团队。我们小组由16位教师组成,有四位来自滨州,有三位来自东营,有九位来自烟台。其中由来自烟台市芝罘区教科研中心的林光老师任组长,由来自滨州市北镇中学实验初中部的邢成云老师和莱州市实验中学张延芳老师任指导老师,由来自东营市育才中学的刘江老师任组内专家,根据工作需要,组内又分为4个任务小组。

每一项任务都被分解为几个部分来讨论和撰写,然后再合成讨论,再经指导教师、组内专家把关后,再提交李教授审核,然后再审核定稿。课例打磨计划的制定,让大家完全进入了工作状态,也了解了理论研究、行动研究和载体呈现的重要性。授课任务由烟台三中分校的曲晓媛老师承担,她自我封闭了一天进行独立一备,其他人则对a视频脚本进行了细致的研讨,为便于在网络上呈现这个递进的过程,我们进行了录音和会议记录,想保持这个课例打磨的真实过程。在二备的过程中,大家各抒己见,充分讨论,很快达成了共识,二备很顺利,b脚本也很顺利完成了第一稿。

第一段集中研修,7天很快结束了。我们才发现自己的节奏是那么紧张。基本上是房间、餐厅和工作室,每天从早上到深夜。多数人连楼也没有走出去。第二阶段是分散研修和录课的时间。但每天大家还是第一时间上网交流和学习。尽管录课是在烟台,大家还是克服困难参加了实地的课堂观察。

12月21日,大家重聚济南,进行了观课交流,录制b视频和d视频,完成了网络记录和呈现任务,并撰写了课例学习导引等,最终一个完整的课例打磨资源,在大家的共同努力下顺利完成。回顾整个过程,我们不得不说,每一项工作成果无不都是大家共同智慧的结晶。每个小过程,我们组内都进行详细而明确的分工,而且这种分工特别重视彼此的互助性。每位教师都非常积极认真的完成各自的任务和协助任务。任务是艰巨的,但结果也是令人振奋的。

三、不同的体会,共同的收获。

(一)这次研修,给了大家太多的感慨。

教学设计、上课、听课、评课本是教师最经常的工作,却因没有明确的问题引领,没有客观的观察统计,没有必要的理性思考,没有更深一步的行动和理论跟进,使我们的校本研修摆脱不了低效的困境,也浪费了老师们的时间,也使得大家的水平和课堂教学质量得不到提高。聚焦问题,不仅需要理论的学习和思考,更需要真实、客观和科学的关注,更需要行动研究和逐步的'跟进践行,在坚决问题中,成长自己,促进学生。

(二)这次研修,给了大家太多的感动。

参加研修的教师,大多是学校里的中坚力量,身兼多职,但大家对待这项工作,无不尽心尽力,尤其在当讨论的时候,都愿意把自己的观点拿出来,与别人分享,阐述自己的理由。彼此真诚的交流,常让人有无声处闻惊雷的感觉。与会的工作人员,也都尽可能的为别人服务。各位专家,尤其是李红婷教授更是耐心指导,精益求精。可以说,研修中,每一个人感动着别人的同时,也被别人感动着。雅斯贝尔斯说:“教育就是一朵云推动另一朵云,一棵树摇动另一棵树,一个灵魂唤醒另一个灵魂。”研修也正是这样。我们有理由相信,教育战线上不乏执着的追梦人,不乏具有高尚情怀和追求的教育工作者。

(三)这次研修,给了大家太多的收获。

虽然整个研修,都是围绕任务展开的。但服务他人的同时,更成就的是自己。在课例打磨的过程中,每一位教师都有自己的收获。有的开阔了思路,有的提升了理论,有的净化了心灵。同时,也结交了很多业内同行。其实,同伴的交流是最大的财富。有一种收获,可以穿透时空,长久的留在记忆里,那就是精神的成长和彼此的感动。

(四)这次研修,给了大家更多的思考。

日常教学研究,应该聚焦于教学有关的各类现实存在的问题,应该注意反复开放和聚焦,在解决和研究中,不断提出新的问题和实际的行动跟进研究。

我们感觉到,广大的一线教师都是有强烈的教育责任感、使命感和教育情怀的,对教育教学的追求是大家共同的心愿。通过本次高研班研修,我们认识到其实大道至简,道不远人。

初中数学年度总结 篇8

基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。

质数

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。

算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。

概念

只有1和它本身两个约数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的约数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个约数外,还有其它约数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)

100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。

注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。

初中数学年度总结 篇9

知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。

非负数

非负数大于或等于0。

非负数中含有有理数和无理数。

非负数的和或积仍是非负数。

非负数的和为零,则每个非负数必等于零。

非负数的积为零,则至少有一个非负数为零。

非负数的绝对值等于本身。

常见的非负数

实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。

常见表现形式

非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。

知识归纳:任何一个非负数乘以-1都会得到一个非正数。

初中数学年度总结 篇10

1、一元一次方程根的情况

△=b2-4ac

当△>0时,一元二次方程有2个不相等的实数根;

当△=0时,一元二次方程有2个相同的实数根;

当△<0时,一元二次方程没有实数根

2、平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:

①N边形的内角和等于(N-2)180度

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

初中数学年度总结 篇11

列出方程(组)解应用题的一般步骤是:

1审题:弄清题意和题目中的已知数、未知数;

2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;

7作答:包括单位名称在内进行完整的答语。

一,行程问题

基本概念:行程问题是研究物体运动的,它研究的'是物体速度、时间、行程三者之间的关系。基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程

追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2

二、利润问题

现价=原价*折扣率

折扣价=现价/原价*100%

每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用

利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价

三、计算利息的基本公式

储蓄存款利息计算的基本公式为:利息=本金×存期×利率

税率=应纳数额/总收入*100%

本息和=本金+利息

税后利息=本金*存期*利率*(1-税率)税后利息=利息*税率

利率-利息/存期/本金/*100%利率的换算:

年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)

四、浓度问题

溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量

五、增长率问题

若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n=b或a(1-x)=bn

六、工程问题

工作效率=总工作量/工作时间工作时间=总工作量/工作效率

七、赛事,票价问题

赛事

单循环赛:n(n-1)/2

淘汰赛:n个球队,比赛场数为n-1场次票价则对应的不一样的赛制乘以对应的单价。

初中数学年度总结 篇12

转眼的时间,我在教师的岗位上又走过了半年。追忆往昔,展望未来,为了更好的总结经验教训无愧于“合格的人民教师”这一称号,我现将20xx-20xx年度第一学期工作情况总结如下:

一、师德方面:加强修养,塑造师德

我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。

二、教学方面:虚心求教,强化自我

担任七年级两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干初中数学教师工作总结20xx-范文大全初中数学教师工作总结20xx-范文大全。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。

首先是从教学理论和教学知识上。我借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用!。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。

其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。

最后我做到“不耻下问” 教学互长。从另一个角度来说,学生也是老师的。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。

为了不辜负领导的信任和同学的希望,我决心尽我最大所能去提高自身水平,争取较出色的完成教学。为此,我一方面下苦功完善自身知识体系,打牢基础知识,使自己能够比较自如的进行教学;另一方面,继续向其他教师学习,抽出业余时间向具有丰富教学经验的老师学习。对待课程,虚心听取他们意见,备好每一节课;仔细听课,认真学习他们上课的安排和技巧。这半年来,通过认真学习教学理论,刻苦钻研教学,虚心向老教师学习,我自己感到在教学方面有了较大的提高。学生的成绩也证实了这一点,我教的班级在历次考试当中都取的了较好的成绩,。

三、 考勤纪律方面

我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。

我担任的两个班级的数学教学工作取得了一定的成绩,我将继续努力,取得更优异的教学成绩,为学校争光!

初中数学年度总结 篇13

1初中数学教学如何进行学情分析

1.基于学情分析,确定教学目标

教学目标对教学有方向性的指导作用,它是教学的出发点也是归属点,学情分析是教学目标设定的基础,没有学情分析基础的教学目标是不科学的,科学的教学应通过分析学生的“已知”和“未知”来确定教学目标。例如,笔者曾在教人教版七年级上册《正数和负数》这一章节时,先进行这样的学情分析:学生已经学习过整数和分数(包括小数),对数的概念有了一定的了解,但是对生活中数的应用理解不深。针对这一情况,笔者将本节课的教学目标设定为:整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;能区分两种不同意义的量,会用符号表示正数和负数;体验数学发展的一个重要原因是生活生产的需要,激发学生学习数学的兴趣。这一教学目标不但重视问题解决的结果,而且重视问题解决的过程以及学生在问题解决过程中的体验等。

2.基于学情分析,唤起学生学习数学的兴趣

只有当学生对所学内容产生了兴趣,形成了内在的需要和动机时,他才能具有达成目标的主动性,由“要我学”变为“我要学”。如在学习《椭圆》一节时,首先我让一位学生按照课本要求在黑板上用事先准备好的材料自主画椭圆,其余学生观察椭圆的形成过程,通过学生的观察和实践,培养学生探究问题和动手操作的能力,加之在学习本课之前,学生已经学习了《曲线与方程》部分内容,这就为得出椭圆的定义和标准方程做了铺垫。就学情而言,本节课的重点是掌握椭圆的定义、几何图形、标准方程及简单性质,了解椭圆在刻画现实世界和解决实际问题中的作用。学生自主动手操作的过程直观性强,吸引了全班学生的眼球,一下子点燃了学生的思维火花,从而为本课数学的高效教学奠定了坚实的基础。

3.基于学情分析,培养学生的学习能力

“学习需要”和“学习准备”都是学情分析的重点内容,在上每一节新课之前,都要分析本班学生的整体学习能力和特殊群体的学习能力,并在教学中采取相应的措施。譬如普通高中课程标准实验教科书《数学》(必修2)《直线、平面平行的判定及其性质》一节中所涉及的定理、性质较多,且所任教班级大部分学生基础比较薄弱。教学时笔者鼓励较为积极的学生上台讲解,教师退居倾听者和引导者的角色,让学生成为课堂的主角。这就促使上台讲解的同学必须先理清思路,组织语言;台下听讲的同学对这一新颖的方式感到新奇,促使他们认真听讲,积极思考,参与的热情高涨。这一变化不仅激发了讲课学生的积极性,也给听课的学生注入了一支强心剂,引起学生对数学的兴趣,提升课堂教学效果的同时,对于学生培养数学思维和锻炼语言表述能力也大有裨益。

2提高数学课堂效率

设计问题

“好奇”是兴趣的基础,如果把难以理解的数学问题设计成与学生日常生活有联系的问题,然后呈现给学生,这样他们会很容易由好奇心引起需要,引起求知欲望和学习兴趣,不仅调动了他们的学习兴趣,也同时加深了学生对问题的理解记忆。

我曾经就有过这样的经历,在学习整式加减这部分的时候,我们遇到了这样一道题:x-y=2,求3y-3x+2(x-y)的值。对于这样的题,学生会觉得很难,没有思路。通过老师的讲解后,再次遇到还是不会。我们通常是说明y-x与x-y是互为相反数的,学生不感兴趣就记不住。如果我们把x-y看成是一家人,他们家的门牌号是2,那么y-x这家人的门牌号正好相反,说明这两家人是有联系的,他们是亲属关系,互为相反数。这样讲学生会认为很有意思,并记忆深刻。

设计实验

学生是学习的主体。如果教师设计的内容再精彩,学生不听、不学,也没有兴趣,也会事倍功半。上课前设计与本节课内容相关的小故事或是小实验,以此来集中学生的注意力,让学生养成关注数学的习惯,学生就会对数学产生兴趣和期待,在每节课上课前就已经期待老师会有什么样的惊喜,这样学生就会不知不觉地喜欢上数学。

所以,我尝试用与众不同的方式来吸引学生。我曾在学习等式性质这节课时,首先拿出了天枰,然后拿出了两个完全一样的棒棒糖放在天枰上,使天枰平衡,学生马上就能说出两边相等。我又拿出了两块完全一样的巧克力,同时放在天枰上,天枰依然平衡。学生通过小组合作可以探究出等式的性质,并且哪一组最先探究出结果,哪一组就能获得这些奖励。这样做不仅集中了学生的注意力,并且调动了学生学习的积极性,培养了学生小组合作的能力,从而提高了课堂教学效率。

3数学教学方法

改变传统的教学模式,增强课堂教学的趣味性

“良好的开端,是成功的一半”。如何诱发学生产生与学习内容、学习活动本身相联系的直接学习兴趣,使学生从新课伊始就产生强烈的求知欲望,是至关重要的。如教学“三角形内角和”可用“猜”的办法。课前让学生每人准备一个任意三角形,并量出每一个内角的度数。上课时,随意叫学生说出三角形中的两个内角的'度数以后,教师猜第三个内角的度数。教师每次都能猜对,学生惊奇之余,急切地想探寻其中的奥秘,于是就会积极投入到新知识的学习当中去。低年级学生年龄小、好胜心强,教学中可以充分利用学生的这一特点,让学生体验通过自己的努力而获得成功的喜悦。如在教学“乘法竖式计算”时,教师对学生说:“这节课我们要学的乘法竖式与以前学的加法竖式写法基本相同,只是把原来的加号变为乘号。”教师继续问:“现在谁能帮助老师把这个竖式写出来”这样一个新问题通过学生自己的努力就解决了,教师没有过多地讲解,学生却陶醉于成功的喜悦之中。

从生活中的例子和学生熟悉的事物入手,简化复杂的数学问题

数学知识原本就比较抽象,要使抽象的内容变得具体易懂,就得从生活中挖掘素材,在日常生活中发现数学知识,利用数学知识来提高学习的兴趣。例如,讲“概率”这一节时,这个概念的描述非常抽象,学生不易理解,在教学中笔者做了如下改进:模仿一个商场的活动设置了个转盘,让学生体验中奖的可能性,极大地吸引了学生的兴趣。最后,笔者还准备了一份“丰厚”的奖品,让学生仿照上面的例子设计一个游戏方案,使自己尽可能地获得这份奖品,这时,学生兴趣正浓,一定会想:怎么设置方案自己机会才大呢游戏与数学概念无形中连在了一起,此时此刻,思维的火花不点自燃。

用精彩的问题设置吸引学生,诱发求知欲

在现代教学过程中,学生是教学的主体,教师需要做的是引导和规范。美国著名心理学家布鲁纳说:“学习者不应是信息的被动接受者,而应是知识获取过程中的主动参与者。”因此,笔者决定把课堂还给学生,让他们真正成为课堂的主人。课堂提问是启发学生积极思维的重要手段,教师要善于运用富有吸引力的提问激发学生的兴趣。

4数学思维培养

把握教材是高效教学的重要前提

我们在听课中经常发现,教师上课,就题讲题,就事论事,分不清轻重缓急,平均使用力量,照本宣科。发生这种现象的主要原因,在于教师没有把握教材。把握教材要从全局着眼,从整体上去认识教材,并用联系的观点系统地分析教材。首先在理解《标准》基本理念的前提下读懂教材。通过反复阅读教材,查阅有关教学参考资料,了解全册教材的编写特点,明确各部分教学内容的目的要求和在全套教材体系中的地位,了解它们之间的内在联系;研究全册教材的所有知识点在各单元的分布情况;还要研究每个单元和每节课的教学目标。

其次,要熟练地掌握教材的知识体系、逻辑结构和编排意图。确定出每个单元和每节课的教学重点和难点,并制定出相应的教学目标。第三,把握教材中的知识结构转化为教师的认识结构,只有到了这一步才算把握了教材,教学中才能驾轻就熟,寓繁于简。

创造性地使用教材是高效教学的关键

教材只是为学生的学习活动提供了基本线索,是实现课程目标,实施教学的重要资源,而不是资源。实验教材为广大教师提供了一个创造性使用的广阔空间。如,有的教学内容在呈现方式上有一定的弹性,便于大家灵活使用。但实验教材处于实验阶段,可能还存在这样或那样的不足,所以,我们在教学教程中,要依据《标准》的精神,结合本地本校及学生的实际情况,创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材。

下面提供几点创造性地使用教材的建议:1、可以根据情况重新调整知识的顺序。2、可以结合本地和学生熟悉的生活实际,提出能达到同样教学目的的有思考价值的问题,让学生在解决问题的过程中,体会数学的价值,学习解决问题的策略。3、可以扩大例题的思维空间,体现知识的整体效应,突出知识的内在联系和数学思想方法。4、可以根据实际需要适当补充或删减有关教学内容,但是也应注意,在创造性地使用教材的过程中,不要随意降低或拨高教学要求。

初中数学年度总结 篇14

对于本学期教研组工作,简要总结如下:

一、工作进展情况

本学期我校数学组成员由上学期的7人减为6人,虽然人数减少了,但是工作量并没有减轻,反而加大了,同时,工作质量也没有因为人员变动降低了,反而还在原有的基础上提升了。

总而言之,本学期的教研工作进展顺利,不但超额完成了学期初工作计划内的事情,还圆满完成了校级、县级甚至是市级安排的临时任务。

二、主要成绩

1.接待实习生及置换生两批次共计3人次。

2.批阅教案800余次(平均每位教师每周7节次)。

3.集体备课次总计12次,平均每位教师主备2次。

4.公开课达9次,包括实习生在内,平均每人一次。

5.参与网络培训、校内外外出培训活动达29人次,其中网络培训达18次,平均每人三次(含国家级西南大学中小学教师学科培训6人次,市级远程培训之“评好课”专题6人次、县级信息技术培训6人次),校外培训学习4人次,省级2人次,县级2人次;校内培训7人次。

6.参与校内外听评课100余次,平均每人进20余次。

7.参加校内课赛1人次,获奖1人次。

8.开展学生活动两项,分别是数学基础知识竞赛和数学手抄报大赛,数学基础知识竞赛覆盖全校学生,参与度达100%,发放奖金800余元;数学手抄报参与学生80余人,参与度近20%,发放奖金400余元。

三、经验及体会

经验总结:教师是知识的传承者,教师的素养决定着学生的未来,因此,本学期在教研工作方面,我主要着手加强教师专业素养的提高,严格按照上级要求对本组教师的教案进行认真细致的批阅,认真组织本组教师积极开张集体备课活动以及听评课活动。而兴趣是学生学习最好的老师,因此,我又通过开张数学知识竞赛、数学手抄报等活动激发了学生学习数学的热情,为学生创造了良好的数学学习氛围。

体会:教师专业素养的提高与业务水平的提高,有利于学生在数学课堂上听到更精彩生动的课,学生学习兴趣的提高又可以影响教师教育教学的积极心态,因此,两者是相辅相成,互相促进的,往后还必须加这方面的研究。

四、存在问题

1.组内成员的教学理论水平曾次不齐,导致全校数学教育教学质量在不同年级,不同班级之间都存在差异。

2.组内成员的工作积极性没有完全调动,尽管有所改观,但仍需努力。

3.组内成员的专业成长速度缓慢,课后对专业知识的自我提升完善观念欠缺。

五、今后努力的方向

1.继续积极开展各项师生活动,丰富师生课余生活。

2.继续落实各级相关要求,努力完善组内各项规章制度

3.加强组内成员的理论学习,不断提高组内成员的业务水平。

4.努力创建和谐平等的教学工作环境,加强与其他学科教师的沟通协作。

5.努力争取各种大小培训活动,强化队伍建设。

初中数学年度总结 篇15

数轴

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a0时,-a0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

初中数学年度总结 篇16

不知不觉,一个学期的教学工作又告一段落了。本学期是我第一次担任数学教学工作,经验尚浅,开始,对于重难点,易错点及中考方向可以说毫无头绪。为不辜负校领导及前辈们的信任,我丝毫不敢怠慢,认真学,积极请教,努力适应新时期教学工作的要求,从各方面严格要求自己,结合学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有效率地开展。一学期下来确实取得了一定的成绩。为使今后的工作取得更大的进步,现对本学期教学工作做出总结,希望能发扬优点,克服不足,以促进教训工作更上一层楼。

一、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,选择教学方法,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。

二、增强上课技能,提高教学质量,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学需求和学能力,让各个层次的学生都得到提高。现在很多学生反映喜欢上数学课了。

初中数学年度总结 篇17

一.行程问题

行程问题要点解析

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。

二、利润问题

每件商品的利润=售价-进货价毛利润=销售额-费用

利润率=(售价--进价)/进价*100%

三、计算利息的基本公式

储蓄存款利息计算的基本公式为:利息=本金×存期×利率利率的换算:

年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)

四、浓度问题

溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量五、增长率问题

若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1x)b或a(1x)b

初中数学年度总结 篇18

一、师德方面:加强修养,塑造师德

我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。

二、教学方面:虚心求教,强化自我

担任两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。

首先是从教学理论和教学知识上。我不但自己订阅了三四种教学杂志进行教学参考,而且还借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。

其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。

最后我做到“不耻下问”教学互长。从另一个角度来说,学生也是老师的“教师”。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。

三、考勤纪律方面

我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。

四、业务进修方面

随着新课程改革对教师业务能力要求的提高,本人在教学之余,还挤时间自学本科和积极学习各类现代教育技术。

五、不足之处

反思一年多的工作,自己在一些细节工作上还存在着不足,特别是学生对作业本的保管、潜能生作业的书写缺乏指导和严格要求。在今后的`工作中,应充分注重工作中的细节,尽量使自己的工作做得扎实。

总之,在这学期的教学工作中收获了很多,提高了很多,同时也感受到了自己的不足。在今后的工作中,应不断提高自己的业务能力、充实自己的业务理论水平、提高自己在学生管理方面的能力、注重细节工作,一如既往的兢兢业业,勤奋钻研,尽量使自己的各项工作做得更扎实、更完善、更有效、更实在。

初中数学年度总结 篇19

一、学情分析的意义

学情分析就是要对学生的实际情况进行分析,包括经验、知识、能力、情感等。建构主义的皮亚杰认为,知识既不是客观的,也不是主观的,而是个体在与环境相互作用的过程中逐渐建构的;相应地,认识既不起源于主体,也不起源于客体,而是起源于主客体之间的相互作用。进一步说,个体在遇到新刺激时,先尝试用自己原有的认知结构去同化它,以求达到暂时的平衡;同化不成功时,个体则采取顺应的方法,即通过调节原有认知结构或新建认知结构,来得到新的平衡。个体的学习不是在一片空白或完全相同的背景下进行的,他的已有经验、知识、能力、情感等都不同程度地参与其中。因此,教师的教学应尊重学生的心理发展规律。帮助学生把教材中学习的新内容与头脑中原有的认知结构建立起本质的清晰的联系,才是有意义学习。

当学生头脑中不具备学习新知识的知识储备时,教师可以补充相关知识,为学生提供新知识的固着点;如果学生已经具备了学习新知识的知识储备,但是不具备独自探究的能力时,教师可以采取讲授的教学方法;如果教学内容学生已经完全掌握,就需要教师进行教学内容的筛选和教学目标的提升,以实现教育效果的最优化。由此可见,学情分析对于教学目标确定,教学方法选择和教材处理都具有重要意义。

二、学情分析的内容

《义务教育数学课程标准》在课程目标中从知识与技能、数学思考、问题解决和情感态度四个维度对学生的发展提出了预期目标。课程目标是预先确定的要求学生通过某门课程的学习所应达到的学习结果。教学目标是通过一个特定教学过程(如一节课)的学习,学生应该达到的学习结果。教学目标是对课程目标的细化。而在确立教学目标时,必须从学生的实际情况出发分析学生已经具备的学习状态,与预期目标的差距。因此,我从课程目标这四个维度来划分学情分析的内容,更有利于学生已经具备的学习状态和教学目标要求状态的有效衔接,也更有利于课程目标的实现。

1.知识与技能

基础知识和基本技能是学生数学学习的基础,是数学应用的基础。在教学中,学生是否具备了学习新知识所需要的相关概念以及对有关定义的运用情况影响着后续学习。美国当代著名心理学家戴维奥苏伯尔(DavidAusubel)曾在《教育心理学―认知观点》中说:“假如我把全部教育心理学仅仅归纳为一条原理的话,我将一言以蔽之:影响学习的唯一重要的因素,就是学习者已经知道了什么。要探明这一点,并应据此进行教学。”因此,在教学前应了解学生原有知识基础,作为新知识的生长点。

2.数学思考

数学思考是指运用“数学方式的理性思维”进行的思考,它培养学生以数学的眼光看世界。学生除了要学习一些现成的概念和法则外,更重要的是这些结论的生成过程,而这个过程离不开数学思考。如从现实的生活中抽象出数学问题,通过推理丰富数学结论,通过建模把这些结论应用到现实生活中去。这些抽象、推理、建模思想在每一节课,每一个知识点的生成过程中都需要考查,才能最大限度的调动学生思考。

3.问题解决

问题解决包括从数学角度发现、提出、分析和解决问题的能力四个方面。它是经由数学思考发现问题,用数学语言和符号提出问题,借助以往的知识和经验分析解决问题,多次训练后形成一种稳定的能力。问题解决的学情分析应侧重于学生的已有解决相关问题的经验,积累了足够经验才能把握问题的本质,从而解决问题。

初中数学年度总结 篇20

考点1

相似三角形的概念、相似比的意义、画图形的放大和缩小。

考核要求:

(1)理解相似形的概念;

(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2

平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3

相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4

相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5

三角形的重心

考核要求:知道重心的定义并初步应用。

考点6

向量的有关概念

考点7

向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

考点8

锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9

解直角三角形及其应用

考核要求:

(1)理解解直角三角形的意义;

(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

考点10

函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:

(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

(2)知道常值函数;

(3)知道函数的表示方法,知道符号的意义。

考点11

用待定系数法求二次函数的解析式

考核要求:

(1)掌握求函数解析式的方法;

(2)在求函数解析式中熟练运用待定系数法。

注意求函数解析式的步骤:一设、二代、三列、四还原。

考点12

画二次函数的图像

考核要求:

(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

(2)理解二次函数的图像,体会数形结合思想;

(3)会画二次函数的大致图像。

考点13

二次函数的图像及其基本性质

考核要求:

(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

注意:

(1)解题时要数形结合;

(2)二次函数的平移要化成顶点式。

考点14

圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点15

圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点16

垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点17

直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点18

正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点19

画正三、四、六边形。

考核要求:能用基本作图工具,正确作出正三、四、六边形。

考点20

确定事件和随机事件

考核要求:

(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点21

事件发生的可能性大小,事件的概率

考核要求:

(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

注意:

(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点22

等可能试验中事件的概率问题及概率计算

考核要求:

(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

注意:

(1)计算前要先确定是否为可能事件;

(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点23

数据整理与统计图表

考核要求:

(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

初中数学年度总结 篇21

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧。小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的`半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

1、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立。

②从这个假设出发,经过推理论证,得出矛盾。

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角。

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等。同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角。90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

初中数学年度总结 篇22

一、基本知识

一、数与代数

A、数与式:

1、有理数:①整数→正整数,0,负整数;

②分数→正分数,负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:带上符号进行正常运算。

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数

无理数:无限不循环小数叫无理数,例如:π=3.1415926…

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根;0的平方根为0;负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:

A^M+A^N=A^(M+N)

(A^M)^N=A^(MN

(A/B)^N=A^N/B^N

除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式:A^2-B^2=(A+B)(A-B);

完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

解二元一次方程组的方法:代入消元法;加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax^2+bx+c=0;

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a

,4ac-b^2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元二次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao

ta”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△B,则A+C>B+C;

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;

例如:如果A>B,则A-C>B-C;

在不等式中,如果乘以同一个正数,不等式符号不改向;

例如:如果A>B,则A*C>B*C(C>0);

在不等式中,如果乘以同一个负数,不等号改向;

例如:如果A>B,则A*C<B*C(C<0);

如果不等式乘以0,那么不等号改为等号;

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;

3、函数

变量:因变量Y,自变量X。

在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图像:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。

②正比例函数Y=KX的图像是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O时,则经234象限;

当K〈0,B〉0时,则经124象限;

当K〉0,B〈0时,则经134象限;

当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱,上下底面就是N边形。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。

性质定理:角平分线上的点到该角两边的距离相等;

判定定理:到角的两边距离相等的点在该角的角平分线上;

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

——补角=180-角度。

4、同角或等角的余角相等——余角=90-角度。

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理

三角形两边的和大于第三边

16、推论

三角形两边的差小于第三边

17、三角形内角和定理:

三角形三个内角的和等于180°

18、推论1

直角三角形的两个锐角互余

19、推论2

三角形的一个外角等于和它不相邻的两个内角的和

20、推论3

三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(

ASA):有两角和它们的夹边对应相等的

两个三角形全等

24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS):有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1

在角的平分线上的点到这个角的两边的距离相等

28、定理2

到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、推论1

等腰三角形顶角的平分线平分底边并且垂直于底边

31、推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;

32、推论3

等边三角形的各角都相等,并且每一个角都等于60°

33、等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

34、等腰三角形的性质定理

等腰三角形的两个底角相等

(即等边对等角)

35、推论1

三个角都相等的三角形是等边三角形

36、推论

有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理

线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1

关于某条直线对称的两个图形是全等形

43、定理

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3

两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理

直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理

如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理

四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理

n边形的内角的和等于(n-2)×180°

51、推论

任意多边的外角和等于360°

52、平行四边形性质定理1

平行四边形的对角相等

53、平行四边形性质定理2

平行四边形的对边相等

54、推论

夹在两条平行线间的平行线段相等

55、平行四边形性质定理3

平行四边形的对角线互相平分

56、平行四边形判定定理1

两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2

两组对边分别相等的四边

形是平行四边形

58、平行四边形判定定理3

对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4

一组对边平行相等的四边形是平行四边形

60、矩形性质定理1

矩形的四个角都是直角

61、矩形性质定理2

矩形的对角线相等

62、矩形判定定理1

有三个角是直角的四边形是矩形

63、矩形判定定理2

对角线相等的平行四边形是矩形

64、菱形性质定理1

菱形的四条边都相等

65、菱形性质定理2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1

四边都相等的四边形是菱形

68、菱形判定定理2

对角线互相垂直的平行四边形是菱形

69、正方形性质定理1

正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1

关于中心对称的.两个图形是全等的

72、定理2

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理

等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理

在同一底上的两个角相等的梯

形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理

如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1

经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2

经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷2

S=L×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理

三条平行线截两条直线,所得的对应线段成比例

87、推论

平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,

所截得的三角形的三边与原三角形三边对应成比例

90、定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1

两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2

两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3

三边对应成比例,两三角形相似(SSS)

95、定理

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)

96、性质定理1

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2

相似三角形周长的比等于相似比

98、性质定理3

相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

(a<90)

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理

不在同一直线上的三点确定一个圆。

110、垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2

圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理

一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线L和⊙O相交

0<=d<r

②直线L和⊙O相切

d=r

③直线L和⊙O相离

d>r

122、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理

圆的切线垂直于经过切点的半径

124、推论1

经过圆心且垂直于切线的直线必经过切点

125、推论2

经过切点且垂直于切线的直线必经过圆心

126、切线长定理

从圆外一点引圆的两条切线相交与一点,它们的切线长相等

,圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理

弦切角等于它所夹的弧对的圆周角?

129、推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?

133、推论

从圆外一点引圆的两条割线,这一点到每条

割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离

d>R+r

②两圆外切

d=R+r

③两圆相交

R-r<d<R+r(R>r)

④两圆内切

d=R-r(R>r)

⑤两圆内含

d<R-r(R>r)

136、定理

相交两圆的连心线垂直平分两圆的公共弦

137、定理

把圆平均分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理

正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积Sn=pn*rn/2

p表示正n边形的周长

142、正三角形面积√3a^2/4

a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:L=n兀R/180——》L=nR

145、扇形面积公式:S扇形=n兀R^2/360=LR/2

146、内公切线长=d-(R-r)

外公切线长=d-(R+r)

初中数学年度总结 篇23

参加初中数学远程培训二个多月时间了,通过这段培训,我受益匪浅,感受很多。下面就是我的.点滴体会:

一.对新教材有了初步了解

学习了义务教育新课标的理念和课例解读后,我对于未曾变动的旧的知识点,考纲上有所变化的做到了心中有数。对于新增内容,哪些是中考必考内容,哪些是选讲内容,对于不同的内容应该分别讲解到什么程度,也更明确了。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到初中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的专业分析对我们理解教材,把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。

二.对课堂教学设计、教学案例的编写方面的内容有了提高。

培训活动中,自己通过视频观看学习了“案例导入”、“专家讲座”、“互动讨论”、“课例作业”等内容,使自己在教学设计、教学案例以及课堂教学等方面有了进一步的提升和加强,特别是在课堂教学设计,令人豁然开朗。通过视频观看学习了《有序数对》和《图形的旋转》,感觉很有收获。如以往听课从未记录过讲课者教学过程各个环节的时间分配,听课时只注意了讲课者的知识传授情况,而没注意欣赏、品析讲课者的教学追求、洞察其教学的理论依据等。特别是听了专家讲座后,自己才知道还有很多不足。自己今后将认真按专家的指点开展教学活动。

三、教学实战能力得到加强

本次培训充分关注培训教师的实际需要,不仅传授了现代教学技术和手段,在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。专家向我们讲授了“计算机教学手段应用”“中学教师标准解读”“教学技术及应用”“新课标解读”等,先进的教学理念及其别具一格的教学风格使本人在观摩、思考、碰撞中得到提高。整个培训活动从实际到理论,再由理论到实际,循序渐进,降低了学习的难度,提高了学习的实效。

四、通过培训学习,使我清楚地认识到整体把握初中数学新课程的重要性及其常用方法。

整体把握初中数学新课程不仅可以使我们清楚地认识到初中数学的主要脉络,而且可以使我们站在更高层次上面对初中数学新课程。整体把握初中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。与学生的总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。

总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去,做新时期的合格的初中数学教师。

初中数学年度总结 篇24

20xx年12月17到19号,我区数学课堂大比武活动在祝阳二中举行,3天的比赛时间里,18位数学老师为我们展示了18节精彩纷呈的数学课堂。师生之间和谐默契的配合,科学合理的教学流程,良好的教学效果,无不体现着我区初中数学教师较高的专业水平。虽然是赛课,但老师们的课堂少了花架子,实实在在的专注于创设适合学生认知规律的学习背景,新课程的理念已深深的植入我区数学教师的内心,学生为课堂主体得到了很好的落实。3天的听课,使我收获很大,先将个人感想总结如下:

3天的教学内容如下:

12月17号:八年级上册6。1第二课时不等式的基本性质12月18号:八年级上册6。2第一课时不等式的解和解集12月19号:八年级上册6。2第二课时一元一次不等式及解法我想以课堂流程为主线,从以下几个方面进行总结:

一、学习目标:

使用学案的老师都将学习目标放在了学案的第一环节,在讲课过程中有3位老师一开始就出示学习目标,有5位老师放在导课之后出示目标,有2位老师放在课堂小结前出示学习目标,有八位老师没有提及学习目标。出示目标的老师方式也不一样,有的老师让学生读一遍,有的老师自己读完,有的老师象征性的突出这一环节,马上带过。从效果看,出示目标对提高课堂效益没有太大意义,尤其是放在课堂的开始出示目标,学生对本节课的数学概念、方法,思想并不熟悉,学生读过之后就会忘记,学生也不会时刻想着学习目标指导自己学习,时间白白浪费。从设计目标内容看,多数老师设计学习目标科学合理,但也存在一些问题:一是目标表述笼统,如“培养学生自主探索与合作交流的能力”,要细化为:会与同伴交流解题感想。如“提高学生分析问题解决问题的能力,培养学生的学习兴趣”,这是教学目标,不是学习目标,那节课不都有这样的目标,成万能目标了;二是学习目标中不能出现“培养学生合情推理能力”这样的目标,谁培养,是老师,老师是主语,其实是教学目标与学习目标混了。

二、课堂导入

参加讲课的老师使用了三种导课方式:

1、复习导课。复习等式的基本性质得到不等式的基本性质;复习方程的解得到不等式的解;复习一元一次方程的定义得到一元一次不等式的定义;复习一元一次方程的解法步骤得到一元一次不等式的解法步骤。

2、探究法导课。仿照等式的基本性质2,把不等式的两边同乘以或除以同一个数,让学生个人选择一些数代入研究,发现有三种情况:不等号方向不变(两边同乘以或除以一个正数);不等号变成等号(两边同乘以零);不等号方向改变(两边同乘以或除以一个负数)。实验得到了结论。

3、创设情境导课。情景导航中的飞机最多还能装载多少顶帐篷;面包车限载7人;高速路限速100迈;至少答对几道题。贴近生活激发兴趣。

第一天6位老师都从回顾等式的基本性质入手,引入不等式的基本性质的探究,为相似知识之间的类比做好铺垫,导课方式合情合理,效果不错。

第二天学习不等式的解及解集,教材设计了有关直升飞机运载灾物资的情景,有两位老师使用了这个情景导入新课;汶口一中的范义坚老师以乘坐的面包车来参加赛课,面包车的载客量和在行程中看到的限速牌的情景导入新课;李新刚老师设计了购物情景导入新课;十四中的赵培义老师设计了竞赛得分的情景导入新课;一位老师没有设计导课环节,直接给出自学指导,学生自学。

第三天21中的高凤老师设计了一个关于读书的情景导入课题,另有3位老师从回顾一元一次方程入手,引入课题;两位老师没有设计课堂导入环节,直接出示探究指导,让学生自主学习新知识。

从效果看,课堂的开始设计情景导入环节,这是师生交流的开始,尤其是赛课,面对的是陌生的学生,设计一个学生熟悉或是感兴趣的情景,对于提升学生的学习热情,拉近师生之间的距离,活跃课堂气氛,激发学生的求知欲望很有效果。但是在创设情景时,不要形式上的贴近现实,如导课时有教师“如果我们学校捐赠10顶帐篷,这架飞机能一次运走吗?”,看上去联系我们学校了,贴近我们了,岂不知我们学校哪有帐篷,又扯远了

三、探究新知环节

参加讲课的老师非常重视学生的自主学习、合作探究的学习方式,设计了非常生动的探究情景,比较合理的自学指导,指导学生如何小组探究、如何反馈,如何评价。此环节充分体现了我区初中教师对新课改理念的理解,老师们已把传统的填鸭式教学模式彻底抛弃,新的探究式教学已深入人心。实验中学的董海涛老师在教授不等式的基本性质时,首先回顾等式的基本性质,然后出示一组不等式,学生类比等式的基本性质得到了不等式的基本性质1,然后董老师大胆让学生猜想不等式是否还有其他性质,学生类比猜想“不等式的两边同时乘以或除以一个不为零的数或整式,不等号的方向不变”这一看似合理但有错误的结论。董老师告诉学生,猜想不一定正确,猜想后还需有科学合理的推理、论证才可以判断它是否正确。(这一步让学生大胆去猜想非常智慧,为学生自然类比出性质提供了舞台,当然是在学生不能提前看书的基础上),董老师鼓励学生想办法验证自己的猜想。学生运用代入不同数值的方法发现,同乘正数和负数是不同的,乘以负数,不等号的方向要改变,所以对于乘法,要分类讨论,学生得到了不等式2和3。这种设计,符合知识的发展,生成规律,即让学生自主掌握了知识,又让学生学会了很重要的解决问题的方法(对比一些老师的让学生自主学习,那数学的“过程”自然也就淹没了,学生不经历这一过程,得到的知识浅多了)。十五中的邱玉荣老师在教授不等式的解法两个例题时,通过较为简单的例题1让学生感知类比方程的解法可以求不等式的解集,邱老师放手让学生自己试着解例题2,相当多的学生能成功的得到不等式的正确解集,且步骤合理。邱老师让学生通过板演展示,学生评价等方式完善方法和步骤,达到让所有学生掌握的目的。这种方式,能让中等以上的学生通过自主学习,感受到成功的乐趣,也体现了邱老师分层教学的理念。

出现的问题

1、不等式基本性质的探究过程大体分几种情况:

(1)性质1、2、3一块得出;

(2)性质1、2、3分别得出;

(3)性质1、2一块得出,然后探究性质3;

(4)性质1先得出,然后探究性质2、3一块得出;

通过课堂观察,第四种情况符合知识发生发展规律,符合学生认识规律,自然生成,其他均有人为硬性的痕迹,是按照成人的思维来设计,不够自然流畅。

另外,性质1的探究过程没有按>0,<0研究,性质2为什么没按呢?再就是缺乏对“等于零”的情形的研究,分析不全面。

再有,教师安排学生自学课本和学案,一定时间后让学生回答性质1、2、3,就算是对性质的探究过程了。让学生看课本总结性质1、2、3,流于形式,没有探究的味,假探究,学生看课本总结那不是鼓励学生背课本、读原文,自己总结么?教师的引导有如何体现??2、合作交流的时机不当

一上课,出示引例后问“直升飞机最多能装载多少顶帐篷?”,此问题一出,立即让学生进行交流讨论,是时机吗?有必要吗?教师要思考“什么时候让学生合作交流?”

3、有的老师对小组合作只作为一个形式运用,没有考虑实际价值。如没有设置探究解决的问题或设置的问题很随便。一位老师让学生在数轴上画不等式x<2的解集时,问学生2在数轴化实点还是虚点,学生集体回答画虚点,老师又说“同学们讨论一下为什么画虚点?”这样的讨论有点多余,因为这是前一节课学生熟练掌握的内容;有的老师在学生合作学习开始前没有交代好方法和注意事项,小组合作学习开始后不停地补充,这样就很容易打断学生的思路。有的老师没有给足够的时间合作学习,很短的时间后就让学生反馈或自己进行总结,这样就达不到小组合作解决问题的目的。有的老师在反馈小组合作学习的成果时,只选择组长来说,这样不能调动所有学生的学习热情;

四、训练巩固环节所有讲课的老师都特别重视训练巩固,精心设计了形式多样,紧扣当节课所学知识点,易于掌握重点和突破难点的训练题组。老师让学生通过自主练习,暴露出存在的问题,然后通过形式丰富的反馈加以纠正。

这一环节存在的问题有:

1、有的老师设计的题组难度跨度大,没有充分考虑学生的认知水,讲解例题之前最好先做一些基础性的题目,为例题的顺利解决做一个台阶;2、教师讲评前要仔细审查学生板演的情况

如学生板书“x—5<—3”,把“—”号看做乘号“●”了,但按此乘号“●”做得很好,教师讲评时不问青红皂白,直接批死,造成“冤假错案”,其实该生是平时学习不错的优秀生,致使该学生看错了,而且看错的原因也是教师的课件不清楚所致。

3、在反馈环节,老师指名课代表、班长、组长等,因为他们大都是优等生,样本不具有代表性,不能反映出学生存在的问题;学生板演时,老师不敢让学生暴露错误,学生一旦出错,老师马上对其订正,错误没能呈献给所有学生,具有代表性的错误不能有效订正。让学生在数轴上表示解集时,应让学生自己画数轴,自己标数字,教师一般不要提前画好数轴,只等学生来完成剩下的任务

4、拓展不当,如拓展“已知x≥m且x为正数,确定实数m的范围。”,与本节课时内容关联性不强。

5、在数轴上表示不等式的解集时,有教师在数轴与所标线内涂上阴影,意指阴影部分是解集,与课本不符。

五、课堂小结

在课堂小结环节,老师们大都提出“本节课你有什么收获”或“本节课你学到了什么”这样的问题,然后让学生总结,学生大都总结出一节课所学到的知识点,以及在做题中出现的错误进行总结。有两位老师的总结涉及到了当堂课的数学方法和思想。老师们注重了所授知识的概括、归纳及总结,对解决问题的方法,对所学知识的应用及价值的总结有所淡化,也没有涉及到对学生情感、学习态度和存在问题的总结。

六、学案

讲课的18位教师,有16位老师使用了学案,但学案的设计质量参差不齐,有的学案个个环节齐全,重点突出学习指导,训练题组有创新,当堂检测设计科学合理。印象最深的是道朗一中的李新刚老师设计的学案,征得李老师的同意后将他设计的学案附在后面,请大家参考。

学案存在的问题有:

1、1、有的学案没有标注课题,显得不完整

2、2、有的老师将学案设计成训练题,没有体现上课的过程

3、3、有的老师设计的学案设计成了教案的`形式,出现教学目标、教学过程等词语,学案设计不规范

4、4、有的学案内容空洞,没有实用性,老师发给学生学案后,没有应用。

七、关于达标检测

18位老师都设计了当堂达标这一环节,达标检测题进行了精心设计,题型包括选择、填空、解答与计算,题型丰富。特别是增加了选择题的比重,中考选择题分值占50%,老师们着眼中考,从这里看出我区数学老师丰富的教学经验。

存在问题:

有的老师设计的题量太多,有一位老师设计了11道题目;有个别老师设计的题目难度偏大;有的老师因课堂时间安排不合理,课堂检测没有完成,导致没有反馈和订正,有很多老师因前面的环节不紧凑,导致拖堂,有的拖堂达到近10分钟。

八、课件

讲课的18位老师都使用了教学课件,老师的的课件制作的各有特色,能极大地提高课堂效益,多数老师在使用过程中得心应手,说明我区的数学课堂课件的使用已非常普及。

存在问题:

个别老师操作不熟练,不能及时翻页、跳页;过早地呈现后面的内容,退不回去了;对比度不强,许多文字、符号看不清。

初中数学年度总结 篇25

一元一次方程定义

通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题

一、什么是等式?1+1=1是等式吗?

表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?

含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?

将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式一定是方程吗?方程一定是等式吗?

等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

五、"解方程"与"方程的解"是一回事儿吗?

方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

初中数学年度总结 篇26

角度制知识:用度(°)、分(′)、秒(″)来测量角的大小的制度叫做角度制。

角度制

角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。

角度制中单位的换算。

角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

角度制就是运用60进制的例子。

角度制中角度的运算。

两个角相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。

两个角相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上一个单位退1当作60。

测量角的大小的另外一个方法,角度制与弧度制的换算。

主要把握180°=π rad这个关系式。

例如:1度=π /180 弧度30度转换成弧度值:弧度=30*π /180终边相同的角的表示β=α+k360°k属于整数。

知识归纳:除了角度制可以测量角的大小,还有一种——弧度制也可以测量角的大小。

初中数学年度总结 篇27

初中数学长方形的中考知识点集锦

长方形也就是我们所说的矩形,是基础的平面图形。

长方形

有一个角是直角的平行四边形叫做长方形 (rectangle)。又叫矩形。

长方形长与宽的定义:

第一种意见:长方形长的那条边叫长,短的那条边叫宽。

第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。

长方形的性质

①两条对角线相等;

②两条对角线互相平分;

③两组对边分别平行;

④两组对边分别相等 ;

⑤四个角都是直角;

⑥有2条对称轴(正方形有4条)。

以上的内容是长方形的性质及定义,请大家做好笔记了。

初中数学年度总结 篇28

教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。 在中学任职以来,我本着以重实际、勤钻研、求实效的工作原则,以培养学生创新精神和实践能力为重点,以新课程改革为契机,优化教学常规,深化课堂教学改革,大力推行素质教育,求真、务实、创新、高效地工作着,现将教学工作总结如下:

一、一片冰心在玉壶——树立新的教育理念,坚定教书育人信念。

教育事业乃民族大业,振兴教育人人有责,素质教育和新课程改革对中学教育提出新的要求,学生成为教育的中心,爱成为教师职业道德的核心,也成为教书育人的根本途径,因此,我确立了“一切为了人的发展”的教育理念,明确了“用真挚的爱教育每一个学生”,用适合每个学生的方法教育学生的教学工作目标。

二、衣带渐宽终不悔——我的教学工作。

任职期间,我在坚持抓好新课程理念应用的同时,大胆改革课堂教学,探索新的教学方法,具体表现在:

1、进一步优化教学常规,充分发挥老师的主导作用。围绕着“什么是有效的历史教学?怎样才能提高课堂教学的有效性?”这一问题,我作了认真思考和分析,明确了教学思路和重点,一是在备课上下功夫,为此,我继续钻研和解读新课程标准、考纲和新教材,继续分析、了解学情,关注学生的知识基础、思想动态,备课做到知识点准确全面,知识体系简明科学,授课方式艺术多变,感染力强,使课堂教学集知识性、艺术性、思想性于一体,从而激发了学生的学习兴趣,有效调动了学生的学习积极性,大大提高了课堂效率。二是在巩固训练上设底线。即精心设计课后作业和单元检测,定时定量训练,全批全改,然后通过讲评使学生不仅查缺补漏,明确了知识,而且掌握了高质量完成试卷的技巧和方法,提高了解决问题的能力。

2、调动学生积极性,突出学生的主体地位。如何突出学生的主体地位?我从调动学生的学习积极性入手,因为积极性提高了,学生才会真正投入到学习中来,做到自主学习与合作探究,才会主动发现问题和解决问题。为此,在备课时,考虑学生的知识储备和兴趣点,设计出激发学生兴趣和激活学生思维的问题;课堂上与学生建立平等、民主的学伴关系,给自己的教学风格定位为亲切、风趣、激情、广博,这就是采取多鼓励、少批评的评

初中数学年度总结 篇29

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:

①在同一平面

②两条数轴

③互相垂直

④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成。

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成。

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

初中数学年度总结 篇30

顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。

中位线

中位线概念

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

初中数学年度总结 篇31

一、学情分析的目标:

(1)进一步培养良好的数学行为习惯和学习习惯。

(2)加强学风建设,培养学习数学的兴趣,明确学习任务,注重学法指导,提高学习效率。

(3)培养学生获得知识和技能,培养观察和分析推理的能力,培养学生实事求是,严肃认真的科学态度和学习方法

二、学情分析的内容:

主要包括学生学习起点状态的分析、学生潜在状态的分析两部分。学生起点状态的分析主要从三个维度展开:知识维度,指学生的认知基础;技能维度,指学生已有的学习能力;素质维度,指学生的学习态度、学习习惯、意志品质……学生潜在状态的分析,主要指学生可能发生的状况与可能的发展。下面我就初中数学课作学情分析,敬请各位老师斧正。

在我的数学教学中,我认为学生的数学基础影响学生的学习兴趣,九年级任务重,学习进度快,两级分化严重,学生学习主动性不够,学生学习习惯有待提高。学生除了需要学习数学,还要学习其它科目,时间有限,需要我们教师教会学生解题方法以提高速度。

三、学情分析的方法:

1.学生的热点问题要善于剖析

我们捕捉到的来自学生中间的信息,可能非常凌乱,成因也可能会很复杂,与数学教学的联系或许未必紧密,不可能把捕捉到的所有信息简单地堆砌到课堂教学中去。这就需要教师学会用实事求是的观点、方法,耐心分析、遴选出与思想数学结合最紧密、最有代表性的学生热点。分清哪些是积极的、哪些是消极的

2.用心捕捉学生热点问题

学生在为人处事的生活实践中,常常会对某一事物或某一问题表现出极大的关注和倾向,这种关注点和倾向性构成了学生的热点,成为把脉学情的捷径。数学课是一门思维较强的课程,准确把握学生学习中的热点问题,有助于增强教学的实效性和针对性。

做好学生的思想工作,阐明中考竞争的严峻形势,让学生有忧患意识,从而调动学习的积极性。多与各科教师联系,及时了解学生动态,接受科任老师的建议。多与家长交流,形成合力,共同督促学生学习,使其进步。学生进行深刻的自我反思,对自己的学习提出具体的要求,促成每个学生形成适合自己的良好学习方法。

初中数学年度总结 篇32

圆周角知识点

1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论:

1)在同圆或等圆中,相等的圆周角所对的弧相等。

2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)

4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

补充:

1、两条平行弦所夹的弧相等。

2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

平均数中位数与众数知识点

1、数据13,10,12,8,7的平均数是10

2、数据3,4,2,4,4的众数是4

3、数据1,2,3,4,5的中位数是3

有理数知识点

1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、整数和分数统称为有理数。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴。

5、在直线上任取一个点表示数0,这个点叫做原点。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7、由绝对值的定义可知:

一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则:减去一个数,等于加上这个数的相反数。

14、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

初中数学年度总结 篇33

平方根表示法

一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

中被开方数的取值范围

被开方数a≥0

平方根性质:

①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:

1、定义不同。

2表示方法不同。

3、个数不同。

4、取值范围不同。

联系:

1、二者之间存在着从属关系。

2、存在条件相同。

3、0的算术平方根与平方根都是0

含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

求正数a的算术平方根的方法;

完全平方数类型:

①想谁的平方是数a。

②所以a的平方根是多少。

③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

一键复制全文保存为WORD
相关文章