最新高一物理知识点总结归纳(通用16篇)
一、曲线运动
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
二、运动的合成与分解
1、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
1、分运动的独立性;
2、运动的等效性(合运动和分运动是等效替代关系,不能并存);
3、运动的等时性;
4、运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
2、怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,
(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=GG,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=G<9.8m/s2
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
由mg=mv2/R或由==7.9km/s
5.开普勒三大定律
6.利用万有引力定律计算天体质量
7.通过万有引力定律和向心力公式计算环绕速度
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)
(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,
如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当α
如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα<0,w<0.这表示力f对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
一、时刻与时间间隔的关系
时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。例如:第3s末、3s时、第4s初……均为时刻;3s内、第3s、第2s至第3s内……均为时间间隔。区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
二、路程与位移的关系
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。
三、运动图像的含义和应用
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。
1.理解图象的含义:(1)x-t图象是描述位移随时间的变化规律。(2)v—t图象是描述速度随时间的变化规律。
2.了解图象斜率的含义:(1)x-t图象中,图线的斜率表示速度。(2)v—t图象中,图线的斜率表示加速度。
1、热力学第二定律
(1)常见的两种表述
①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从低温物体传到高温物体。
②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。
a、“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助。
b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响。如吸热、放热、做功等。
(2)热力学第二定律的实质
热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。
(3)热力学过程方向性实例
特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀过程。
2、能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变。
第一类永动机不可制成是因为其违背了热力学第一定律;
第二类永动机:违背宏观热现象方向性的机器被称为第二类永动机。这类永动机不违背能量守恒定律,不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的.无序性增大的方向进行)。
熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。
3、能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。
线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf
向心加速度a=V^2/R=ω^2R=(2π/T)^2R4.向心力F心=Mv^2/R=mω^2_=m(2π/T)^2_
周期与频率T=1/f6.角速度与线速度的关系V=ωR
角速度与转速的关系ω=2πn(此处频率与转速意义相同)
主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。
(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
电场
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。
2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
1.精选最全高一物理知识点总结归纳5篇
2.精选高一物理知识点总结归纳5篇
3.最新高一物理知识点总结归纳5篇
4.高一物理知识点总结归纳5篇
5.最新高一物理知识点总结5篇
1.物质与运动
世界是物质的,而物质是运动的。运动是物质的存在方式和根本属性。恩格斯说:“运动,就它被理解为存在方式,被理解为物质的固有属性这一最一般的意义来说,囊括宇宙中发生的一切变化和过程,从单纯的位置变动起直到思维。”运动是标志一切事物和现象的变化及其过程的哲学范畴。
物质和运动是不可分割的,一方面,运动是物质的存在方式和根本属性,物质是运动着的物质,脱离运动的物质是不存在的,设想不运动的物质,将导致形而上学。另一方面,物质是一切运动变化和发展过程的实在基础和承担者,世界上没有离开物质的运动,任何形式的运动,都有它的物质主体,设想无物质的运动,将导致唯心主义。
2.运动与静止
物质世界的运动是绝对的,而物质在运动过程中又有某种暂时的静止,静止是相对的。静止是物质运动在一定条件下的稳定状态,包括空间位置和根本性质暂时未变这样两种运动的特殊状态。运动的绝对性体现了物质运动的变动性、无条件性。静止的相对性体现了物质运动的稳定性、有条件性。运动和静止相互依赖、相互渗透、相互包含,“动中有静、静中有动”。无条件的绝对运动和有条件的相对静止构成了事物的矛盾运动。只有把握了运动和静止的辩证关系,才能正确理解物质世界及其运动形式的多样性,才能理解认识和改造世界的可能性。
3.时间和空间
时间和空间是物质运动的存在形式。物质运动与时间和空间的不可分割证明了时间和空间的客观性。
时间是指物质运动的持续性、顺序性,特点是一维性。
空间是指物质运动的广延性、伸张性,特点是三维性。
物质运动总是在一定的时间和空间中进行的,没有离开物质运动的“纯粹”时间和空间,也没有离开时间和空间的物质运动。具体物质形态的时空是有限的,而整个物质世界的时空是无限的;物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。一切以时间、地点、条件为转移,具体问题具体分析,是马克思主义的活的灵魂。物质、运动、时间、空间具有内在的统一性。
4.时间与时刻
1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。
△t=t2—t1
2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。
3.通常以问题中的初始时刻为零点。
5.路程和位移
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。
1、参考系:运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。
2、质点:
(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:
①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能。当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;
路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为。
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
补充:速度与加速度的关系
1、速度与加速度没有必然的关系,即:
(1)速度大,加速度不一定也大;
(2)加速度大,速度不一定也大;
(3)速度为零,加速度不一定也为零;
(4)加速度为零,速度不一定也为零。
2、当加速度a与速度V方向的关系确定时,则有:
(1)若a与V方向相同时,不管a如何变化,V都增大。
(2)若a与V方向相反时,不管a如何变化,V都减小。
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=GF2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
【匀变速直线运动的基本公式和推理】
1.基本公式
(1)速度-时间关系式:
(2)位移-时间关系式:
(3)位移-速度关系式:
三个公式中的物理量只要知道任意三个,就可求出其余两个。
利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同,
解题时要有正方向的规定。
2.常用推论
(1)平均速度公式:
(2)一段时间中间时刻的瞬时速度等于这段时间内的平均速度:
(3)一段位移的中间位置的瞬时速度:
(4)任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等):
【对运动图象的理解及应用】
1.研究运动图象
(1)从图象识别物体的运动性质
(2)能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义
(3)能认识图象的斜率(即图象与横轴夹角的正切值)的意义
(4)能认识图象与坐标轴所围面积的物理意义
(5)能说明图象上任一点的物理意义
2.x-t图象和v-t图象的比较
一、质点的运动
(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t(定义式)2.有用推论Vt^2Vo^2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2+Vt^2)/2]1/26.位移S=V平t=Vot+at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a
二、质点的运动
(2)----曲线运动万有引力
1)平抛运动
1.水平方向速度Vx=Vo2.竖直方向速度Vy=gt
3.水平方向位移Sx=Vot4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+Sy^2)1/2,
位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。
(3)θ与β的关系为tgβ=2tgα。
(4)在平抛运动中时间t是解题关键。
(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2G=6.67×10^-11Nm^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)
4.卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/sV2=11.2Km/sV3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2h≈3.6kmh:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。
(2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
机械能1.功
(1)做功的两个条件:作用在物体上的力.物体在里的方向上通过的距离.
(2)功的大小:W=Fscosa功是标量功的单位:焦耳(J)1J=1N*m
当01)平均功率:当v为平均速度时
2)瞬时功率:当v为t时刻的瞬时速度
(3)额定功率:指机器正常工作时最大输出功率实际功率:指机器在实际工作中的输出功率正常工作时:实际功率≤额定功率
(4)机车运动问题(前提:阻力f恒定)P=FvF=ma+f(由牛顿第二定律得)汽车启动有两种模式
1)汽车以恒定功率启动(a在减小,一直到0)P恒定v在增加F在减小尤F=ma+f当F减小=f时v此时有最大值
2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)a恒定F不变(F=ma+f)V在增加P实逐渐增加最大此时的P为额定功率即P一定
P恒定v在增加F在减小尤F=ma+f当F减小=f时v此时有最大值
3.功和能
(1)功和能的关系:做功的过程就是能量转化的过程功是能量转化的量度
(2)功和能的区别:能是物体运动状态决定的物理量,即过程量功是物体状态变化过程有关的物理量,即状态量这是功和能的根本区别.
4.动能.动能定理
(1)动能定义:物体由于运动而具有的能量.用Ek表示表达式Ek=1/2mv^2能是标量也是过程量单位:焦耳(J)1kg*m^2/s^2=1J
(2)动能定理内容:合外力做的功等于物体动能的变化表达式W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1)定义:物体由于被举高而具有的能量.用Ep表示表达式Ep=mgh是标量单位:焦耳(J)(2)重力做功和重力势能的关系W重=-ΔEp
重力势能的变化由重力做功来量度
(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关重力势能是相对性的,和参考平面有关,一般以地面为参考平面重力势能的变化是绝对的,和参考平面无关
(4)弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1)机械能:动能,重力势能,弹性势能的总称总机械能:E=Ek+Ep是标量也具有相对性
机械能的变化,等于非重力做功(比如阻力做的功)ΔE=W非重
机械能之间可以相互转化
(2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能发生相互转化,但机械能保持不变
表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有重力做功
匀速直线运动的速度与时间的关系
●匀速直线运动
1、定义:物体沿着直线运动,而且保持加速度不变,这种运动叫做匀变速直线运动。
2、匀变速直线运动的分类:
3、匀变速直线运动的v-t图象
实验小车的v-t图象是一条倾斜直线。由此可知,无论Δt取何值,无论在什么时间阶段,Δt对应的速度变化Δv都相同,即Δv/Δt不变,则物体的 加速度不变。所以匀变速直线运动的v-t图象是一条倾斜直线。在数学函数图象中,Δv/Δt叫做图象的斜率,故v-t图象的斜率表示物体做匀变速直线运动 的加速度的大小。
第一节认识运动
机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
运动的特性:普遍性,永恒性,多样性
参考系
1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
2.参考系的选取是自由的。
(1)比较两个物体的运动必须选用同一参考系。
(2)参照物不一定静止,但被认为是静止的。
质点
1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
2.质点条件:
(1)物体中各点的运动情况完全相同(物体做平动)
(2)物体的大小(线度)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
一、形变
1、形变:物体的形状或体积的改变。
2、形变的种类:弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)3、弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。
二、弹力
1、定义:发生形变的物体,由于要恢复原状,会对跟它接触的物体产生的力的作用,这种力叫弹力。
2、产生条件:
1.两物体必须直接接触,
2.量物体接触处有弹性形变(弹力是接触力)。
3、方向:弹力的方向与施力物体的形变方向相反。
4、弹力方向的判断方法
(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原状的方向。其弹力可为拉力,可为压力;对弹簧秤只为拉力。
(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。
(3)点与面接触时弹力的方向,过接触点垂直于接触面(或接触面的切线方向)而指向受力物体。
(4)面与面接触时弹力的方向,垂直于接触面而指向受力物体。
(5)球与面接触时弹力的方向,在接触点与球心的连线上而指向受力物体。
(6)球与球相接触的弹力方向,沿半径方向,垂直于过接触点的公切面而指向受力物体。
(7)轻杆的弹力方向可能沿杆也可能不沿杆,杆可提供拉力也可提供压力。(8)根据物体的运动情况,动力学规律判断.
说明:
①压力、支持力的方向总是垂直于接触面(若是曲面则垂直过接触点的切面)指向被压或被支持的物体。
②绳的拉力方向总是沿绳指向绳收缩的方向。
③杆既可产生拉力,也可产生压力,而且能产生不同方向的力。这是杆的受力特点。杆一端受的弹力方向不一定沿杆的方向。
5、弹力的大小:与形变量有关,遵循胡克定律。①弹簧、橡皮条类:它们的形变可视为弹性形变。
三、胡克定律:
(在弹性限度内)F=kx
上式中k叫弹簧劲度系数,单位:N/m,跟弹簧的材料、粗细,直径及原长都有关系;由弹簧本身的性质决定。X是弹簧的形变量(拉伸或压缩量)切不可认为是弹簧的原长。
四、弹力有无判断
(1)拆除法:即解除所研究处的接触,看物体的运动状态是否改变。
若不变,则说明无弹力;若改变,则说明有弹力。
(2)假设法:假设在接触处存在弹力,做出受力图,
再根据力和运动关系判断是否存在弹力。
(3)根据力的平衡条件来判断。
认识形变
1。物体形状回体积发生变化简称形变。
2。分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3。弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1。物体具有恢复原状的性质称为弹性。
2。撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3。如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1。产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2。弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3。在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
F=kx
4。上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5。弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
第二节研究摩擦力
滑动摩擦力
1。两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2。在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
3。滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
4。μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。