作为一名教职工,总不可避免地需要编写说课稿,说课稿可以帮助我们提高教学效果。那么说课稿应该怎么写才合适呢?下面是小编精心为大家整理的小学数学说课教案(优秀4篇),希望能够帮助到大家。
今天,我对人教版六年级上册第四单元的《圆的周长》进行说课。
一、说教材
《圆的周长》是人教版六年级上册第四单元的第二节内容,学生是在三上册已经学习了正方形、长方形等直边图形的周长的基础上进行学习的,是本单元的重点之一,为下节圆的面积以及下册圆柱表面的学习打下了基础,同时通过本节课的学习,进一步培养学生动手实践、团结合作、解决问题的能力,使学生从学中受到启发受有教育。
二、说学情
本节课的学习对象是六年级学生,通过五年的学习,学生各方面的能力已达到一个高度,知识的累积也达到了一定的深度,操作理解与归纳等方面的能力较强。但是思维深度不够,个性差异较大。所以在教学中要正确引导学生精心操作、细心观察、准确归纳、同时多关注个性化思维展示。
三、说教学目标
依据本节的内容和学生的学情我确定本节课的教学目标如下:
1、让学生在合作学习中认识圆周率,并通过测量与计算理解圆周率,最后讨论归纳,推导园的周长公式。突破难点,突出重点。
2、通过学习,给学生一个自由、充足的展示平台,提高学生合作、操作、观察等方面能力,从而体现教学课堂是学生的主体,教师的主导。
3、在合作学习中,寻找解决问题的方法,感受集体力量的伟大、个性魅力的独特,以及科学知识无穷的奥妙与吸引力。从而做到教学课堂育人的实质。
四、说教学重点难点
一节教学是否成功的知识基础,就是要看是否突破难点,突出了重点。学习圆的周长,就要先让学生认识理解圆周率,然后由圆的周长与直径关系,再推导圆周长的公式。所以我确定本节课的教学难点是圆周率的理解,重点是圆周长公式的推导,并能计算圆的周长。
五、说教学方法
要突破这个难点,突出这个重点,就要让学生亲身体验去操作、去感受,让学生用现代化的教学工具通过测量、计算、总结。只有这样学生才能真正的理解圆的周长与直径之关系。所以这节课我主要采用了教师引导为辅,学生合作实践为主的教学方法,让学生在操作去理解圆周率,再归纳推导得出圆周长的计算公式。体现了教学课堂就是:合作学习、实践操作、总结归纳这一本质。
六、说学法
由于本节知识可操作性强,而且高段学生也有较强的操作能力,所以合作学习、实践操作、总结归纳,就是学生的主要学习方法,同时教师引导学生合作就要齐心、观察就要细心、测量尽量准确、总结力求完整。
七、说教学流程
课堂教学的一切理念与方法,都体现在教学过程中,而教学过程是整个课堂教学设计的关键,所以我们设计尽量做到新颖、合理、符合学生实际。
1、组织教学
组织教学时课堂教学必不可少,它贯穿于整个教学的始终,所以一上课我先让学生观察并比较,今天的课堂有什么不同,接着再让学生检查自己书和学具是否准备好,以告诉学生教学课堂必须做到仔细观察,认真比较,而且要有一个良好的学习习惯。
2、创设情景
本节课学习的内容是关于圆的知识,而圆在生活中随处可见,所以我就采用大家都熟悉的月亮,课件出示:一轮满月高挂夜空,静静的水面没有一波纹,这样的画面让学生展开无限的想象,同时也让学生在课间烦躁的心情得以慢慢平静,思维回到课堂。一轮圆月让学生想到了教学上的“圆”,从而引出新知。数学用于生活源于生活。
接着课件出示一组直边平面图形曲线图形,让学生观察“圆”的与众不同即复习了旧知,同时又激起了学生学习新知的兴趣。
3、新知识探索
这是本节课的重点,我安排4个主要环节
(1)、认识圆的周长
周长学生已有了解,但是圆是曲线图形,它的周长到底是什么?在圆的什么位置?这个概念较抽象。所以我先用课件出示:乌龟赛跑,并演示跑一圈就是圆的周长。
再让学生摸手中的圆形纸片一周,就是圆的周长,从而得出周长的概念。
(2)、思考圆周长与什么有关系
要突破难点,就是要让学生理解圆周长与直径的关系,认识圆周率。所以我先让学生结合上节内容来猜想。圆的大小与什么有关?给学生一个思维空间合作的空间,为下一个操作环节做知识与思维的辅垫。
(3)实践操作(认识圆周率)
先猜想,再操作,用实践来验证猜想并在验证过程发现新的规律。本节课如果抓难点,重点也就是不攻自破。圆周率是我们祖先几年前就利用原始的工具,经过无数次的实践与验证得来的。所以让学生亲身体验操作、讨论、分析,学生势在必行的,于是我安排让学生测量周长,接着再计算,得出数据,并观察、比较、归纳,得出圆的周长总是直径的3倍多一些,即圆周率。在测量圆周长时我安排了一个先独立猜想,再讨论,最后展示一个环节,目的是让学生明白,圆的周长可以测量得到,但是测量很麻烦,而且有局限性,激发学生去思考、去操作找一个规律能很快、很准确得到圆周长的方法,让知识牵引着学生的思维,不断的去发挥去创新、去思考、去总结。最后在教师提供的学具下,学生通过测量与计算总结归纳出圆的周长总是它直径的3倍多一些。即圆周率。然后教师课件出示:“祖冲之”,让学生自学阅读,这一环节是整个教学流程的重点,让学生在操作中去体验,去感受,去领悟。
(4)、总结公式
当学生理解了圆周率,知道了圆周率实际上是圆周长与它直径的一个比值,我便及时安排学生归纳总结出圆的周长计算公式。
接着便设计2道例题与3道巩固练习,以加强对新知识巩固和理解,最后做全堂总结,整个教学流程我把握住让学生先观察再体验、先猜测、后实践、最后总结、归纳,学生全程参与、全程体验,完全体现学生的主体作用。
八、说板书设计
板书是一节课的精华的体现,展示了一节课关键词,重点和难点。所以本节课,我先板书了圆周长的概念,加强学生记意,接着板书了圆周长与直径的关系式,以及圆周率有关知识,加强学生的理解,最后板书圆周长的计算公式。整个板书简练、有序、重难点突出,为学生知识积累做了一直观的补充。
九、说教后反思
教后反思是对课堂教学一个自查,查漏补缺,然后进行总结和反思:本节课教学中,在学生的测量时教师意识重要的引导学生有一个正确的测量方法否则就会导致误差太大,得不出想要的结果,另一个就是在学生通过操作计算得出圆周率后,一定要及时引导后学生仔细观察圆周率是一个无限不循环的小数,我了计算简单计算是方便取近似值3.14,它实际比3.14要大。
一、说教材:(我对教材的认识)
1、说课堂教学指导思想及课程标准:
根据新课标的指导思想:学有用的数学和应用数学的思想,在课堂教学活动中,要充分体现学生的主体作用和教师的主导作用,培养学生的全面发展和动手探究问题的能力与协作精神作为指导设计本课教案。
2、说教材地位、特点、作用。
本册书的数学问题基本都来自于学生身边熟悉的事情。体现了数学来源于生活又应用于生活的特点。本课内容“实际问题与一元一次不等式”,是在学习了一元一次方程及不等式的基本性质之后学习,这一部份内容又是后继学习的基础,并且在实际生活中有着广泛的应用,起承上启下的作用,所以非常重要。本节内容共3课时,本课为第一课时。
3、学生情况分析:
初一学生比较的活泼,参与的意识较浓,对于解一元一次方程较为熟练;但在理性分析问题的能力较弱,对生活问题转化为数学问题的转化能力——建模思想较差。
4、说教学目标:
鉴于上述原因,参照新课标要求确定本节课的教学目标、重难点如下:
a知识目标:
①能够列一元一次不等式解决具有不等关系的实际问题;
②进一步体验不等式的解法;
b能力目标:
①发展学生由实际问题转化为数学问题的能力;提高计算能力。
②培养学生对一类问题建立一种数学模型,类比以及分类的数学思想。
c情感目标:
①强化用数学的意识从而乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。
②通过探索数学问题,增强学生之间的配合,敢于面对数学活动中的困难,体验解决问题的成功感。
重点:①由实际问题中的不等关系列出不等式;
②探究一元一次不等式的解法;
难点:列一元一次不等式描述实际问题中的不等关系。
二、说教法与学法指导
1、说教法
课堂教学是一个师生互动的发展过程,结合本节课实际情况,我采取了:
①观察,分析讨论——师生互动
②在解法探究中采取由特殊到一般的归纳方法,灵活运用;让学生体验知识的发生,发展过程,并且采用多媒体教学,有利于学生讨论活动的开展。
2、学法指导
学会用一元一次不等式模型来解决问题,鼓励努力克服困难;多角度认识问题,学会探究问题的方法。
三、说教学程序
1、提出问题,分组讨论,交流(我把这一活动分解为4个小问题)(大约15分钟)
2、由上面的问题出现的不等式而探究不等式的解法,让学生利用不等式的性质类比一元一次方程的解法总结不等式的解题过程(约5分钟)
3、巩固解题方法,给出2个简单的不等式,让学生在黑板上来做(约5分钟)
4、拓展与发展,给出问题2(第三个活动)没有分解成小问题(指导学生先独立,后合作探究)建模的思想(大约12分钟)
5、小结:让学生谈谈对本节课的认识和收获(大约3分钟)
不同层次的学生会有不同的认识,我将作恰当的补充。
让学生思想感情上的升华——克服困难的品质。
四、说板书
我把问题1的解题过程分步书写,让学生能从中体会研究问题的方法,让学生的知识认识上升到理性认识
五、说作业:P1401—4,9
评价上课效果,对本课的内容巩固,反馈作用
一、 说教材
1、教学内容:
本课题是“九年义务教育(人教版)”六年制小学数学第九册第二单元“相遇问题”第一课时的内容。
2、教材简析:
相遇问题是行程应用题的一部分。这部分内容是在学生掌握一个物体运动的有关速度、时间 和路程之间数量关系的基础上进行的。主要是研究两个物体在运动中速度、时间和路程之间的数量关系。这部分内容又是今后学习较复杂的行程问题及工程问题的基础。例如数学书58页-8题(长沙到广州的铁路长699千米,一列货车从长沙开往广州,每小实行69千米。这列货车开除后1小时,一列客车从广州开往长沙,每小时行71千米,再经过几小时两车相遇?)、58页-11题。同时,由于相遇问题中术语较多,如相向、相背、同时、相距,并且速度和的概念学生不易理解,此类题目的发展变化也比较多,因此也是应用题教学的难点。
3、教学目标:
(1)通过创设情境帮助学生理解有关相遇问题的术语:同时、两地、相向、速度和等,形成两个物体运动的空间观念。
(2)经历解决实际问题的过程,引导学生学会分析相遇问题中速度、时间、路程这三种量之间的关系,掌握相遇问题求路程的解题方法。
(3)经历比较、优化等学习过程,发展数学思维能力。感受数学问题的探索性,体验数学与生活的紧密联系。
(4)培养学生细致的`审题习惯,提高学生分析问题和解决问题的能力。
二、学生分析:
这个年龄段的学生对空间感缺乏认知能力,所以首要解决的就是一些术语的理解,行程问题在生活中我们常遇到,却很少用专业的词语去表述所以我特意设置了真实场景、电脑演示、文具模拟帮助学生建立对于物体位置移动的空间想象感。
我班的大部分学生都属于龙洞本村的孩子,平时的家庭辅导仅仅限于检查作业是否完成。虽然三、四年级就开始对应用题的数量关系进行训练,不过一小半的学生仍然感到吃力,对于三步应用题经常会做却不会写数量关系,讲不清楚道理,学生的语言表达能力是比较差的,比较习惯寻找题目特点,套用相对应的方法。一部分学生能够利用分析法从具体问题出发,找到解题的方法,对于一部分学困生,抽象概括出性 速度和Χ时间=路程 这个公式是比较困难的,所以从复习、探讨问题到解决问题我的步子都比较小,多让学生讲解算式的含义,帮助学困生记忆、理解方法。
基于学生情况,我选择了例2“两个工程队合开一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?”对“进度”是多角度的,理解差的可以看作是前进的速度,也可以看作工作效率。
练习的设置从基础题到提高题有一定的梯度,尽量照顾每一层次的学生。
三、说教法
教法:通过情景教学,创设最佳学习情景,充分发挥多媒体计算机辅助教学的优势,紧扣教学内容,科学直观地演示两个物体相对运动的情景,这样把数学问题转化成动态的数学模型展现出来。让学生自主提出问题探究,激发学生兴趣,激活思维,逐层推进,分散难点,增强感性认识,建立表象、抽象规律。
四、教学流程:
教学重点:掌握相遇问题求路程的算理和解答方法。
教学难点:正确理解“速度和”的含义。
教具准备:课件
学具准备:两块橡皮(或两只笔)
(一)、 创设情景、逐步感知
帮助学生理解相遇、相向、同时
师请两位学生从教室两头相向走—相遇—相背走到头,让学生围绕走的方向、走的结果、走的路程几个问题进行观察。两个学生走走停停,学生可以观察不同时间里的运动结果,走了的路程、还有多少路程。这段活动需要一些时间,但对整体认识行程问题有好处。
考虑学生的基础、教学目标,我对教材进行了重组。将准备题和例1合并,并为以后的工程问题做铺垫,特意设置了例2,修地铁。首先学生通过情境演示(两学生表演相遇)理解“相遇”、“相向”、“同时”,对相遇问题建立一个初步的直观的认识;再通过电脑课件的演示,加深“速度和”的理解,知道随着时间的变化,物体的位置将发生移动;最后学生可以利用简单的学具来模拟相遇过程。通过这3个过程在学生脑海中逐步建构物体移动的空间模型。
(二)、 探究问题、加深理解
(大屏幕出示:小强和小丽同时从甲乙两地相对走来,小强每分钟走100米,小丽每分钟走50米,4分钟后两人相遇。)
1、 根据这些信息,你想提点什么数学问题吗?
问题1小强和小丽一共走了多少米?
问题2:小强走了多少米?小丽走了多少米?
问题3:小强比小丽多走了多少米?
2、 通过问题2复习: 速度×时间=路程
3、 这节课重点来研究:小强和小丽一共走了多少米?理解 相距
(两地共有多少米? 甲乙两地有多少米? 甲乙两地相距多少米?)
4、 生上来板书:(1)100×4+50×4 (2)(100+50)×4
5、 反馈:板书算式。同学们对他们的解法有什么疑问就提出来?(每一步各表示什么?)
6、小结:(100+50)表示他们两个人1分钟走的米数,他们走了4分钟,就是4个150米。(课件演示)
速度和×时间=路程 (师板书数量关系,齐读)
7、再实践,同桌合作,用橡皮代替两人,演示相遇的过程。
学生可能会有个难点问题:为什么不列成(100+50)×(4+4),如何处理,体现突破难点?
可以用课件演示大家走路花的时间是共同的4分钟,或者可以用这个例子来解决:上数学课,你一节课多少分钟?他一节课多少分钟?他两这节课多少分钟?那我们大家这节课上了多少分钟?
根据条件学生提出几种问题,这些问题也很好的将学过的知识过渡到要学的新知识;通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。
(三)、解决问题,概括方法
(大屏幕出示:两个工程队合作修一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?)
先指导学生审题:进度可以理解前进的速度,那就是行程问题,“经过15天打通是什么意思?地铁的的长与进度有什么关系?地铁的长可以通过什么去求?还可以通过什么去求?”
1、能独立解决吗?
2、说说它们相同的地方?
(大屏幕出示刚才做过的两道题目)
3、小结
这个例题的设置使得本课更具有开放性,一是为工程问题打下了基础,也放开了学生的思维,避免应用题中经常出现的对号入座的现象,
三、 阶梯练习,扩展思维
1、学生汇报生活中类似问题。
2、基础练习(只列式,不计算)
(1)两列火车同时从甲乙两站相对开出,客车每小时行60千米,货车每小时行40千米,经过4小时两车相遇,甲乙两站相距多少千米?
(2)四(1)班为准备联欢会折纸花,男同学每小时折136朵纸花,女同学每小时折164朵纸花,他们共同折了2小时,一共折了多少多纸花?
(3)甲乙两个打字员合打一份文稿,甲每分钟打35个,乙 每分钟打40个,两人同时打15分钟完成任务。这份文稿一共有多少个字?
生独立解答,并说出算式的含义。
3、 扩展练习
最后,我们来表演一下相遇问题怎样?
(请两生上来,分别给他们一个速度70和80,老师手中拿时间4分钟)
第一种情况:同时出发,4分钟后相遇。求路程?
第二种情况:同时出发,4分钟后两人还相距200米。求路程?
第三种情况:同时出发,相遇后,两人擦肩而过,4分钟后两人还是相距200米。求路程?
4、提高练习
(大屏幕出示题目:小张和小李在环行操场跑步,两人同时从A点出发,反向而行。小张每秒跑4米,小李每秒跑6米,经过20秒在B点相遇。操场的跑道长多少米?)
如果时间不够,留带课后完成。
练习是课堂教学的重要组成部分,设计练习时,我对教材作了处理,力求形式多样,条件问题开放,满足不同层次的需求,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。本课基本练习,要求列式不计算,是希望将更多的时间放在对算式的理解上,将时间留给学生说算式的含义,列式的理由,说的形式由点带动面,即由好生带动差生,(差生可以仿造说)到同桌互说,借此进一步突破本课的重难点—— 求路程的算理和解题方法,逐步提高语言表达能力。
《圆的面积》是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
【教学目标】
1. 要使学生明确圆面积的概念,理解和掌握圆面积公式的推导及应用。
2. 通过学生操作,发现推导圆面积的公式。
3. 结合知识的教学,渗透转化极限的数学思想。
【教学重点难点】
教学重点:圆面积概念的建立,公式的推导及应用。
教学难点:转化和极限两种数学思想的渗透。
【教学设计】
考虑到本节课是几何前后知识的重要纽带,教学内容相对抽象,学生的年龄特点,导致抽象逻辑思维较差,还是以形象直观思维为主,所以使用多媒体作为辅助教学手段,变抽象为直观,为学生提供丰富的感性材料,促进学生对知识的感知,帮助学生理解,激发学生学习的兴趣。
本课使用多媒体,设计时主要想突破以下几个问题:
一。 明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二。 以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。