作为一名优秀的教育工作者,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么写才合适呢?本文是细心的小编演员为家人们收集的5篇五年级上册数学教案的相关文章,欢迎参考,希望大家能够喜欢。
教学内容:
课本第76页。
教学目标:
1、掌握小数四则混合运算的顺序,能正确地进行计算。
2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的运算律对小数加法、乘法同样适用。
3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。
教学重点:
正确计算小数四则混合运算,应用运算律进行简便计算。
教学难点:
运用乘法的运算律进行小数乘法的简便运算。
教学准备:
课件
教学过程:
一、复习导入,揭示课题。(4分钟左右)
1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。
总结:
(1)同一级符号从左往右依次计算;
(2)既有加减,又有乘除,先算乘除,再算加减;
(3)有小括号的,先算小括号里面的。
乘法交换律ab=ba
乘法结合律a(bc)=(ab)c
乘法分配率a(b+c)=ab+ac
2、明确课题。
今天就一起来学习“小数四则混合运算”。
二、自学例14。(15分钟左右)
1、明确例14中的数学信息及所需要解决的问题。
2、自学。
导学单(时间:5分钟)
(1)看图,根据题意列出综合算式。
(2)你是按照怎样的顺序进行计算的?为什么可以这样计算?
(3)比较两种解法,哪一种更简便?
(4)计算并比较三组算式。
点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。
点拨:小数四则混合运算的顺序和整数相同。
总结:“先算出这块菜地的长,再算它的面积”相对简便些。
3、小组交流。
交流内容
(1)小数()四则混合运算的顺序是怎样的?
(2)三道算式的圆圈里能填等号吗?为什么?
(3)整数加、乘法的运算律,对小数加、乘法也都适用吗?
4。集体交流。
导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。
三、巩固练习。(13分钟左右)
(一)适应练习。
1。整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。
点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。
2。整合“练一练”第2题和练习十四的第2题,用简便方法计算。
点拨:0。25×36=0。25×4×9
运用了什么运算律?
2。4×1。02=2。4×(1+0。02)
运用了什么运算律?
(二)口答练习。
1、练习十四第1题中的6道题。
提醒:
(1)数位对齐;
(2)从个位算起;
(3)不要忘加小数点。
(三)整合练习。
1、练习十四第4题。
提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。
2、练习十四第5题。
点拨:
(1)400×0.25×0.35先算400棵向日葵可收葵花子的千克数,再算可榨油的千克数;
(2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。
(四)创编练习。
简便计算:7.3×9.90.125×8.8
提醒:7.3×9.9=7.3×(10-0.1)
0.125×8.8=0.125×8×1.1或
0.125×8.8=0.125×(8+0.8)
四、课堂总结;
通过这节课的学习你学到了什么知识?
教学反思:
精选阅读
苏教版四年级上册《整数四则混合运算练习课》数学教案
苏教版四年级上册《整数四则混合运算练习课》数学教案
第七单元整数四则混合运算
第3课时整数四则混合运算练习课
教学内容:
教材第73页。
教学目标:
学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。
教学重难点:
掌握三步混合运算的运算顺序,巩固解决问题的策略。
教学过程:
一、计算训练
1、揭示课题。
这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)
2、口算:
720÷90484÷2450÷50
28+423×4840÷2
360×265-1756+8
3、计算下面各题。指名说说混合运算的运算顺序是怎样的?
完成练习十一第9题。
学生独立计算,提醒自觉验算。
4、练习十一第10题。
说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。
通过计算检验。
二、解决问题练习
1、练习十一第11、12题。
学生独立解答。
反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。
2、练习十一第13题。
先让学生独立完成估算,并说说是怎样估算的。
再列式算出结果,并把它与估算的结果比较。
3、练习十一第14题。
学生读题,独立解答。
反馈解题思路。
引导思考“你还能提出什么问题”。
学生提出问题并解答。
三、课题总结
通过今天的练习,你有什么收获呢?
教学反思:
四则混合运算
这一单元的目标是这样定的:
1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。
2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的`教师还真不少,认为还是有必要侧重解决问题的策略教学。
在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。
(1)42+6(12-4)
(2)42+612-4
口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后
括号外的乘法,最后算括号外的加法。算减法。
而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。
只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。
第8单元 总复习
第2课时 位置复习课
【教学内容】:教材P114第4题及练习二十五第1题。
【教学目标】:
知识与技能:使学生能够准确地、熟练地用数对表示位置。
过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。
情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。
【教学重、难点】
重 点:用数对确定位置。
难 点:培养学生灵活运用知识的能力。
【教学方法】:组织练习,质疑引导。练习体验,小组交流。
【教学准备】:多媒体。
【教学过程】
一、练习导入
1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:
已知(1,4)表示小亮的位置。
⑴小明、小丽和小红的位置用数对分别可以表示为( , ),( , ),( , )。
⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。
⑶从小明的位置向左数2列,再向后数1行就是小强的位置,小强的位置是( , )。
2.下面是一幅街区平面图,请看图回答问题。
五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。
⑴像上面那样描述一下其他建筑物的位置。
⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的位置。
⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。
二、回顾整理
1.行和列的意义:竖排叫列,横排叫行。
2.数对可以表示物体的位置,也可以确定物体的位置。
3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。
4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。
三、巩固拓展
1.运用平移的方法加深用数对确定物体的位置。
按要求完成题目。 (答案:数对略)
(1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?
(2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。
学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。
2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的棋子的具体位置吗?
学生观察图片,独立思考,同桌交流,然后指名汇报。
四、课后小结
位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。
五、作业:教材第115页练习二十五第1题。
【板书设计】
位置复习课
竖排叫列,横排叫行。 先表示列,再表示行。
物体向左、右平移,行数不变,列数减去或加上平移的格数。
物体向上、下平移,列数不变,行数加上或减去平移的格数。
教材分析
一、主要教学内容
(一)数与代数
1、第一单元“小数除法”
本单元学生已掌握了整数混合运算顺序及运算律、整数乘除法、小数加减法、小数乘法的计算方法,并能利用这些知识解决生活中的实际问题,除数是整数的小数除法是学习小数除法的基础,它是根据整数除法迁移过来的,利用商不变的规律可将其转化为整数除法,体现了转化的思想。通过这部分内容的学习,学生需要掌握小数小除法的计算方法,同时增进对相关运算律的理解,提高运用四则运算解决简单实际问题的能力,包括用“四舍五入”法求积、商的近似值,了解除数大于1(或小于1、接近1)时,商和被除数的关系。学生要能用估算判断计算结果的正确性,并能举例说明估算在现实生活和数学学习的重要性。
2、第三单元“倍数与因数”
本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,
理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决生活中一些简单问题。
通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。
3、第四单元“分数的意义”
在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过
具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。
通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。
(二)空间与图形
1、第二单元“轴对称和平移”
学生在第一学段已初步感知生活中的对称、平移和旋转现象,初步认识了轴对称图形。本单元教科书编写的基本特点主要体现在一下几个方面:1.重视结合已有知识和折纸、画图等经验,进一步学习轴
教学内容:
教材第17~18页的内容。
教学目标:
1、掌握小数混合运算的顺序,能正确地进行小数混合运算。
2、能运用小数混合运算的知识解决日常生活中的实际问题。
3、经历运用数学知识解决实际问题的过程,培养学生分析数学信息的能力,增强学生的数学应用意识。
教学重点:
掌握小数四则混合运算的算法,会进行小数四则混合运算。
教学难点:
通过解决具体问题理解运算间的联系。
教学准备:
教学课件。
教学过程:
学生活动
(二次备课)
一、情境导入
师:前几天五年级同学对我们平时所产生的生活垃圾进行了调查研究,下面就是五年级两个班级的调查汇报情况。(课件出示教材第17页情境图)
师:看到这些数学信息,你能提出哪些数学问题?下面我们就一起来学习。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、提取信息,提出问题。
学生汇报:
信息1:一个人4周可产生约30.8kg的生活垃圾。
引导学生提出数学问题:一个人平均每天产生多少千克生活垃圾?
信息2:一个小区周一到周五共产生生活垃圾约3.5
t,周末每天产生生活垃圾约1.3
t。
引导学生提出数学问题:与平时相比,这个小区周末每天要多处理多少吨生活垃圾?
2、研究连除、乘除混合运算。
根据学生提出的不同问题,有选择性地出示问题:一个人4周可产生30.8
kg生活垃圾,那么一个人平均每天产生多少千克生活垃圾?
学生独立思考后,老师提问:要想求出一个人平均每天产生多少千克生活垃圾,需要什么条件?题目中是否直接给出?用什么方法计算?
(1)学生列式计算后,在小组内交流自己的想法。
(2)小组汇报。学生可能会呈现的方法:
①先计算4×7=28,算出四周一共多少天,再用30.8÷28算出平均一天产生多少垃圾。
②先算每周产生多少千克垃圾,用30.8÷4=7.7,再用7.7÷7算出平均每天产生多少千克垃圾。
师生共同整理:
30.8÷(4×7)
30.8÷4÷7
=30.8÷28
=7.7÷7
=1.1(kg)
=1.1(kg)
(3)提炼方法。先说说综合算式中每步的数量关系,表示具体的意义;再引导观察两个综合算式的运算顺序。
小结:一个数连续除以两个数等于这个数除以那两个数的积。
(4)同桌互相举例验证规律。
师:通过上面的计算和思考,你发现什么?(小数混合运算的顺序和整数相同)
3、研究除、减混合运算。
出示问题:一个小区周一到周五共产生生活垃圾3.5
t,周末每天产生生活垃圾1.3
t。与平时相比这个小区周末每天要多处理多少吨生活垃圾?
学生独立完成,指名板演,集体订正。
1.3-3.5÷5
=1.3-0.7
=0.6(t)
如果学生分步列式计算,试着引导列出综合算式,并根据题中的数量关系,说明运算顺序,再算出结果。
4、探究小数混合运算顺序。
先说说运算顺序,然后独立完成下面算式的计算
(16.8+2.1)÷0.7
0.96÷(5.4÷0.9)
完成后学生汇报先算什么,后算什么。
师引导思考:小数的混合运算与整数的混合运算顺序一样吗?
小结:小数混合运算的顺序与整数混合运算顺序相同。
四、巩固练习
1、完成教材第18页“练一练”第1题。
(1)指名回答第(1)题,集体补充。
(2)指名两位学生板演(2)、(3)题,集体订正。
2、完成教材第18页“练一练”第3题。
学生独立完成,小组订正。
五、拓展提升
根据下面的式子,写出综合算式。
1.32+1.48=2.8
7.92÷1.32=6
2.8÷0.25=11.2
8.2+6=14.2
14.2×2.5=35.5
综合算式:(1.32+1.48)÷0.25
综合算式:(8.2+7.92÷1.32)×2.5
六、课堂总结
通过本节课你学会了什么?还有其他问题吗?
七、作业布置
教材第18页“练一练”第2、4题。
教师根据学生预习的情况,有侧重点地调整教学方案。
学生思考、讨论。
学生理解,形成认知。
学生尝试独立解决。
练习巩固,验证理解。
教学反思:
成功之处:本节课从生活经验出发,引导学生解决实际问题,通过实际问题中的数量关系提炼出计算的顺序,从分步到综合,过程清晰,层次清楚。
不足之处:通过解决实际问题来理解运算的顺序,对理解能力比较弱的学生增加了难度;其次,从实际问题中抽象概括出运算的顺序后,对算理的运用还缺少更多的练习。
教学建议:教学过程中,既要注重算理的教学,还要兼顾技能的形成、提高。
教学内容:
加、减法的意义和各部分间的关系P2P3
教学目标:
1、通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。
2、在经历探索发现加与减的互逆关系及加、减法各部分之间的关系的过程中,培养学生的比较、概括、归纳、判断推理能力。
3、运用加、减法的关系解决简单的实际问题。
教学重点:
进一步理解加、减法的意义,掌握加、减法之间的关系。
教学难点:
理解并掌握加法与减法之间的互逆关系。
教学准备:
实物投影、课件
教学过程:
一、导入新授
加法和减法是一对好朋友,他们之间有什么秘密呢?今天就来研究加、减法的意义和各部分之间的'关系。板书课题。
二、探索发现
1、探究加、减法的意义。
(1)教学加法的意义
出示教材P2例1主题图
思考:怎样求西宁到拉萨的铁路长多少千米?怎样计算?你能用线段图表示表示它们之间的关系吗?
学生独立思考后独立列式:814+1142=1956(千米)并展示线段图。
结合加法算式,说一说加法算式的意义。
教师总结:把两个数合并成一个数的运算,叫做加法。
你知道加法各部分名称吗?
教师总结:相加的两个数叫做加数,加得的数叫做和。
(2)教学减法的意义