作为一位兢兢业业的人民教师,常常要写一份优秀的教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?以下是人见人爱的小编分享的小学数学五年级上册教案(优秀7篇),如果对您有一些参考与帮助,请分享给最好的朋友。
看图找关系是北师大教材五年级上册第三单元数学与交通中的内容。这个内容是新课标的新增内容,主要让学生看懂一些表示数量关系的图表,并根据图中有关信息分析量与量之间的关系,能按要求看图回答问题,有利于培养学生的代数思想和函数思想,教学重点是认识图表,并从图表中获取信息。
在教学设计的时候,我主要考虑的问题是如何把车速与时间的关系、距离与时间的关系、楼层与时间的关系等零散的图表串连起来,创设合理的情境,并让学生将图表中的信息描述出来,以提出问题、自主探索、独立思考与合作交流相结合为主要学习方式,引领学生参与对数学图表的认识,体现数学源于生活而用于生活的理念。
教学的重点是从纵轴和横轴所表示的意义来认识图表,并从图表中获取信息。本节课的知识学生掌握并不难,为了改变课堂的一问一答,让更多的学生参与学习,因此,在课程设计时不能仅仅呈现一幅图,让学生回答你了解了哪些信息,每个数表示什么?还应利用了学生已有的生活经验和知识基础,赋予数学图表以生命,让学生在图表中寻找生活原形的同时,亲身参与活动,用数学语言将生活情境进行再现和表述,以达到认识图表、了解图表的目的。因此,在呈现了时间和速度的关系图后,我通过你能在图中找到加速和减速的感觉吗?这个问题激起学生兴趣,学生结合生活经验,根据自己的理解描述图表中是怎样体现加速和减速的。在这个过程中,我再根据学生的描述指导学生理解横、纵坐标表示的意义,图表中折线往上画,说明速度提高;折线往下画,说明速度降低;折线画成水平,说明速度不变。
在这节课能否让学生动笔来画一画图表?教材虽然没有要求,但是如果从培养学生的思维角度入手,我们是否可以让学生自己来画一画图表呢?所以我设计的课外作业是:请你根据生活中的情境,绘制一幅图表。让学生自己设计图表来规划和跟踪学习和生活,最终实现了人人学有价值的数学。
当然,在教学中还是有以下几点不足之处。
1、虽然在呈现了时间与速度关系图之后,已经引导学生认识了横轴、纵轴和折线的含义,后面的几幅图表学生也能描述出其所表达的数学信息,但如果让学生再说说每幅图分别表示是哪个量和量之间的关系就更好了。
2、部分学生思路清晰,思维活跃;相反,部分学生始终没有回答准确,两极分化较为严重。
单元导学
本单元的主要内容有:比较图形的面积;认识平行四边形、三角形与梯形的底和高;平行四边形、三角形和梯形的面积计算方法;解决有关面积计算的实际问题。
多边形的面积是《数学课程标准》图形与几何领域中的重要内容,也是本册教材的重点和难点知识,是小学生应该掌握的一项基本技能。
学生在以前的学习过程中已经初步认识了长方形、正方形、三角形、平行四边形和梯形,学习了面积与面积单位及长方形、正方形的面积等有关知识,初步感受了解决有关图形面积计算问题的思维方式,即用面积单位去度量一个图形的面积。本单元在此基础上展开图形面积计算公式的探索,解决有关图形面积与组成图形要素之间的数量关系的问题。
备内容
比较图形的面积(1课时)→比较图形面积大小的基本方法;体验图形形状的变化与面积大小变化的关系
认识底和高(1课时)→认识平行四边形、三角形、梯形的底和高;会√★√用三角尺画平行四边形、三角形与梯形的高;能画出指定底和高的平行四边形、三角形与梯形
多边形的面积
探索活动:平行四边形的面积(2课时)→探索平行四边形面积的计算公式;运用平行四边形面积的计算公式解决实际问题
探索活动:三角形的面积(2课时)→探索三角形面积的计算公式;运用三角形面积的计算公式解决实际问题
探索活动:梯形的面积(1课时)→探索梯形面积的计算公式;运用梯形面积的计算公式解决实际问题
备目标
知识与技能
1.借助方格纸直接判断图形面积的大小,初步体验数方格及割补法在图形面积探索中的应用。
2.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。
3.掌握平行四边形、三角形、梯形面积的计算公式。
过程与方法
1.通过动手操作、实验观察等活动,体验图形形状变化与面积大小变化关系,发展空间观念。
2.经历利用割补、转化等方法探索图形面积计算公式的过程,理解并掌握平行四边形、三角形和梯形的面积计算公式,体验转化的数学思想。
情感、态度与价值观
1.在数学活动中,培养学生的创新意识。
2.在具体的操作探究活动中体验学习数学的乐趣。
3.在探索图形面积的计算公式的过程中,获得成功探索问题的体验。
备重难点
重点
1.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。
2.掌握平行四边形、三角形、梯形面积的计算公式。
难点
1.能画出平行四边形、三角形、梯形的高。
2.运用平行四边形、三角形和梯形的面积计算公式解决实际问题。
教学目标:
1.通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自身设计图案。
3.同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养同学的审美情趣。
教学准备:
幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
教学目标
1、理解分数、小数互相转化的必要性,掌握分数和小数互化计算的方法。
2、能正确地将简单的分数化为有限小数,并能在解决实际问题时灵活运用。
3、通过对规律的猜想、验证和总结建立事物相互联系相互转化的辩证唯物主义观点。
教学过程:
(一)创设情境,自主探索
1、在比较中认识互化的必要性
师(课件出示课本情境图):请观察图表,说一说图的意义。
(在学生说的过程中,板书:林林0.4(小时);明明1/4(小时))
师:请同学们比一比,谁用的时间多一些?
(在比较时,可以先让学生估计,然后再精确比较)
生1:我们小组是把小时化成分钟来比较的。小数化成分数来比较大小的。0.4小时是24分钟,1/4小时是15分钟,所以林林用的时间多一些。
生2:我们小组用画图的方法来比较的。我画了10个同样的小格,0.4涂4格,而只涂2格半,所以林林用的时间多一些。
生3:我们小组也是用画图的方法来比较的。我画了100个同样的小格,0.4能涂40格,而只涂25格,所以林林用的时间多一些。
生4:我们小组把小数化成分数的方法来比较的。0.4是4个1/10,也就是4/10,约分后是2/5,大于1/4,所以林林用的时间多一些。
生5:我们小组把分数化成小数的方法来比较的。1/4=1÷4=0.25,0.4>0.25,所以林林用的时间多一些。
师:你们最喜欢哪种方案,为什么?
生1:我喜欢分数化成小数那个小组的方案。因为画图太麻烦了,而分数化成小数,直接用分数的分子除以分母就可以了。
生2:我喜欢小数化成分数的那个小组的方案。分数化小数有的时候除不尽很麻烦,画图也很麻烦,比较时间能化成分钟来比,如果其它单位的还得又一种化法。所以我喜欢把小数化成分数的方案。
生3:把小数化成分数再比较大小,分母不同的时候还得通分,也很麻烦,还不如具体问题具体分析。
。.。.。.
师(小结):同学们回答的都很好,在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。
2、探索分数化小数
师:谁来说一说第5小组是用什么方法把分数化成小数的?
生:用分子除以分母的方法。
师:你是怎么想到用分子除以分母的方法化成小数的?
生:因为分数的分子相当于被除数,而分母相当于除数。
师:请你把71页“试一试”第2题这几个分数化成小数。
(学生独立解答,教师巡视指导。)
3、探索小数化分数的基本方法
师:老师问一下第4小组的同学,你们是用什么方法把小数化成分数的?
生:我们是根据小数的意义把小数化成分数的。
师:能具体的说一说吗?
生:0.4是4个十分之一,也就是十分之四,约分后是五分之二。
师:那0.04,0.004呢?
生:0.04是4个百分之一,也就是百分之四,约分后是二十五分之一;0.004是4个千分之一,也就是千分之四,约分后是二百五十分之一。
师:说的真不错,化成分数后,能约分的要约分,一直约分成最简分数。
师:请观察化简前的分数,分母与小数有什么关系?有没有规律?
(学生分小组讨论,汇报。)
生1:小数的位数与分母1后面的零的个数一样多。
生2:原来有几位小数,就在1后面写几个零作分母。
师:请再观察分子与小数有什么关系?
生:原来的小数去掉小数点后的数作分子,
师:请按照找出来的规律,把课本第71页“试一试”的第1题做到练习本上。
(二)练习提高
1、课本第72页练一练第1题,分数化小数。
2、判断是否正确,如果不对,请改正。
3、数学游戏:你说我答:同桌之间一个说分数一个说小数,互相交换着说。
(让学生熟记一些常用的分数与小数互化的结果)
4、比较各组数的大小(主要是对分数和小数的互化进行练习)。
5、在直线上面的括号里填上适当的分数,在下面的括号里填上适当的小数。
(三)小结延伸
师:本节课的学习你有哪些收获?
(四)实践活动
在生活中寻找用分数或小数表示的信息。
五、教学反思
教学内容:
教材第12~14页的内容。
教学目标:
1、通过货币的兑换,掌握求积、商的近似值的方法,能正确地求出积、商的近似值。
2、经历货币兑换的计算过程,培养学生主动尝试、交流合作的学习方式。
3、感受数学与实际生活的联系,体会数学知识在日常生活中的应用,提高学习数学的兴趣。教学重点:按照要求求出积、商的近似值。
教学难点:
在不同的情况下,积、商的近似值的求法。
教学准备:
教学课件。
教学过程
学生活动
(二次备课)
一、谈话导入
课件出示:美国小朋友玛丽给笑笑寄来一本6.70美元的故事书。
师:你能提出哪些你感兴趣的数学问题?
从学生的问题中提取出:6.70美元相当于多少元人民币?
引出课题:今天我们就来学习如何兑换外币(板书:人民币兑换)。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、了解兑换比率。
师:钱币的兑换不是个人想怎么换就怎么换的,中国人民银行会根据世界各国货币的需求,每天公布一个外汇牌价。大家都必须按照这个牌价来兑换外币。
(1)课件出示中国银行
20xx年10月某一天的国际货币汇率表。
(2)让学生独立阅读,然后互相交流:从这个表里获得了哪些信息?
2、美元兑换人民币。
师:下面我们就利用这些信息来解决上面兑换人民币的问题:6.70美元相当于多少元人民币?
学生列式计算:6.31×6.7=42.277(元)。
小组讨论问题:为什么这样列式?积有几位小数?应该保留几位小数?
6.31×6.7=42.277≈42.28(元)
小结:因为兑换比率显示,1美元能兑换6.31元人民币,那么6.70美元就是6.70个6.31,所以用乘法计算;由于货币的最小单位是分,以“元”为单位时,第三位小数没有意义,所以求出积的精确值后,一般运用“四舍五入法”保留两位小数。
3、人民币兑换美元。
师:我们学会了美元兑换人民币的方法,反过来用人民币兑换美元,你们会兑换吗?
课件出示问题:妈妈用600元人民币可兑换多少美元?
(1)学生独立完成,小组交流解决人民币兑换美元的方法。
(2)学生汇报:600÷6.31≈95.09(美元)。
(3)师生对比两道题的过程和结果,总结求积或商的近似数的方法。
小结:积取近似值要先精确计算,再根据题目要求或实际情况取近似数;人民币兑换通常用“四舍五入法”保留两位小数;商取近似值时,要比根据要求保留的小数位数多求一位,然后取近似值。
4、人民币兑换港币、欧元、新元。
课件出示问题:5000元人民币能兑换多少港元?欧元呢?新元呢?
(1)学生独立完成。
5000÷0.81≈6172.84(港元)
5000÷8.19≈610.50(欧元)
5000÷5.11≈978.47(新元)
(2)学生互相说一说兑换方法,找到兑换其他货币的规律,以便能达到兑换任意货币的目的。
四、巩固练习
1、完成教材第13页“练一练”第1题。
思考:港元兑换人民币的方法和美元兑换人民币的方法一样吗?
2、完成教材第13页“练一练”第2题。
独立完成,集体订正。
五、拓展提升
100日元兑换人民币7.89元,1欧元兑换人民币8.19元,100欧元能兑换成多少日元?
100×8.19=819(元)
7.89÷100=0.0789(元)
819÷0.0789≈10380.23(日元)
六、课堂总结
通过本节课你学会了什么?
七、作业布置
教材第13~14页“练一练”第3、4题。
复习旧知,指向目标。
教师根据学生预习的情况,有侧重点地调整教学方案。
学生独立思考、讨论。
学生尝试练习。
板书设计
教材学情:
《折纸》是北师大版小学数学第九册第四单元的一个学习内容。在这个内容之前,学生已掌握了分数的基本性质,学会了约分、通分的方法,懂得了同分母分数加减法的算理,其中同分母分数加减法的计算方法是本节课最直接的知识起点。本节课的内容又是进一步学习分数加减混合运算的基础,同时又是本单元的重点。
异分母分数加减法的法则是:先通分,再按同分母分数加减法的法则进行计算。五年级的学生,在三年级时已学习了同分母分数加减法,在上一个单元里又掌握了通分的技能。因此,对学生而言,作为构成计算法则的两个重要知识点都已具备,在这节课里,重点是引导学生想到“化异为同”,把异分母分数转化为同分母分数来解决问题。
教学目标:
(一)知识目标
1、使学生理解异分母分数加减法的算理,能正确计算异分母分数加减法。
2、渗透转化的数学思想,初步学会用转化的方法解决一些数学问题。
(二)能力目标提高学生的计算能力和运用所学知识自主解决问题的能力。
(三)情感目标激发学生积极参与数学学习活动的兴趣,并从中获得成功的情感体验,建立学习自信心。
教学重点:
掌握异分母分数加减法的计算法则
教学难点:
理解只有相同单位的数才能直接相加减的算理
教学准备:
多媒体课件、彩笔、正方形纸片
教学教法:
本节课我主要采用“引导探究式教学法”:即设置问题情境→提出问题→探究问题→解决问题→归纳小结→巩固应用。在老师的引导下,以问题为思维的主线,学生先想先做,老师后讲后帮;在教学过程中,主要着眼于“引”,启发学生“探”,利用学生原有的认知水平,激发学生的求知-,促使学生探究解决问题的方法,从中掌握发现问题,解决问题的规律,把“引”与“探”有机结合起来。在主要运用“引探教学法”的同时,结合运用直观教学法、对比教学法、知识迁移法等多种教学方法的有机组合,让学生经历数学知识产生的过程,在具体的情景和数学活动中获取数学知识。
教学学法:
在本节课中,根据学生的心理特点和认知规律,注重在计算法则的引入和形成的过程中,充分发挥学生的主体作用,组织学生自主探索算法、合作交流做法,真正地让全体学生主动、有效地参与教学,体验转化思想在数学中的运用,经历观察、探索、归纳的数学活动,自主推导计算法则。具体学法有自主探究法、合作交流法、动手操作法、练习巩固法等。
教学过程:
为了达到教学目标,我把本节课的教学流程设计为:复习导入,铺垫孕伏→创设情境,提出问题→自主探究,学习新知→巧设练习,巩固新知→课堂评价,师生小结等五大环节。
一、复习导入,铺垫孕伏
我通过设计“把下面各组分数通分”和“口算同分母分数加减法”来复习通分和同分母分数加减法的法则,目的是为学好新课打下基础。
二、创设情境,提出问题
为了激发学生学习的兴趣,让学生感受到数学的实用性,我从学生生活实际出发,从现实生活中的“手工折纸”引入新课,提出问题,引导学生思考“他俩一共用了这张纸的几分之几”。体现数学来源于生活,生活中处处有数学的教学理念,让学生感受到数学就是解决生活实际问题。
三、自主探究,学习新知
新课程倡导,在教学中,教师要重视学生的主观能动性,尊重学生的已有知识和经验,学生也只有通过自己的努力掌握了知识才能树立学习的自信心,才能创造性地学到新的知识,这样的知识才具有生命的活力。本教学环节是主要环节,我分四步进行。
第一步,学习异分母分数加法。我放手让学生通过折一折、画一画、算一算和独立思考、小组合作等教学方式,培养学生解决问题的能力和合作意识,通过师生验证、讨论交流等形式,逐步掌握异分母分数加法的计算方法。为了突破教学难点,我还故意出错题让学生判断,以此让学生理解只有相同单位的数才能直接相加减的算理。
第二步,学习异分母分数减法。由于学生学会了异分母分数加法的计算,所以在此环节中,我又大胆放手让学生自学,通过思考独立完成,让学生经历学习过程,获取成功的体验,建立自信心,培养自学能力。
第三步,算法优化。在解决异分母分数加法、减法的过程中,学生分别用了折纸、画图和计算的不同解法,我让学生比较哪一种算法更好、更方便,引导学生在算法多样化中选择算法化。
第四步,讨论归纳计算法则。先让学生在小组内说说“怎样计算异分母分数加减法”,然后组织全班交流归纳。通过发挥学生合作交流的作用,引导学生自己推导出计算法则。
四、巧设练习,巩固新知
针对本节课的重点、难点,我设计了以下三个层次的练习。
1、基本练习,如“看图填一填”。旨在展示计算全过程,给差生“拐杖”,力保“双基”。
2、综合练习,如“计算”。完成这一层次的练习不仅要用到异分母分数加减法的计算法则,而且要综合运用“通分”、“约分”、“把假分数化成带分数或整数”等知识点,设计意图在于强化算理,提高计算技能。
3、应用练习,如“解决问题”。把所学知识应用于解决生活实际问题,体现“数学来源于生活,应用于生活”。
五、课堂评价,师生小结
新课程倡导评价的多元化,关注学生的学习过程。在教学中,我注意及时表扬鼓励学生,调动学生学习的积极性,激发创新意识;在本节课的最后环节,注重引导学生总结知识经验,完善认知结构。
总之,在本节课的教学中,我能以学生为主体,发挥教师的主导作用,充分调动学生学习的积极性,引导学生自主探究、合作交流,经历数学知识的形成过程,注重培养学生发现问题和解决问题的能力,提高课堂教学效果。
教学目标:
1、能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;
2、发展归纳与概括的能力;
3、了解数学发展的历史,感受数学文化的魅力。
教学重点:
引导学生发现和概括点阵中的规律
教学难点:
寻求多种解决问题的方法,体会图形与数的联系
教学过程:
一、创设情境,生成问题
1.观察图形中的规律
上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?
(出示幻灯片3)3:生观察说规律,可提示,师总结)
2.观察一组数的规律。
看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 )
如果有困难不能出色完成,那我们今天就来一起研究,从而导入
3.出示点子图
同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法)
好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!
二、探索交流,解决问题
1.渗透不同的观察方法
(1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。
(2)指名说怎么观察的?它们之间有什么变化?
(副板书:横竖看、斜着看、拐弯看)
(3)设问,那第5个点阵有多少个点?请画出此图形。
2.小组探究
同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的合作研究;再次出示幻灯片6。
合作任务
1、选择一种观察顺序,用线条分一分这几个图中的点。
2、根据划分的结果写出算式来表示这几个数。
3、想一想,你们从中发现了什么规律?
1=()4=()9=()16=()
(1)学生分组探究,师巡视
(2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)
①生展示分法、算式和规律其他组补充总结规律
②学生说算式师板书
③拓展aa
第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书55)第10个呢?
后两种:下一个图形的算式是什么?(副板书下一个图形的算式)
算一算结果是25吗?
④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!
3.小结
同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。
4.揭示点阵
那么,同学们,在寻找这一组数的规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)
点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。
三、巩固应用,内化提高
(一)试一试
怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。
1、观察下列点阵,你能根据规律画出下一个图形吗?
请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)
生画展示:说明为什么这样画?(有不同的想法吗)
2、下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。
这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)
生做展示算式拓展下一个,你能画出地5个图形,再来研究第4个图形。
(拓展)你还有什么发现?展示幻灯片11。
除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)
(二)拓展延伸
出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?
我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。
对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。
四、回顾整理,反思提升
1、同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)
2、你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。
板书设计:
点阵中的规律
1、正方形点阵
2、长方形点阵
3、三角形点阵
4、其它点阵
小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,
感受数学文化的魅力,同一问题有不同的思路和解决方法。