苏教版四年级上册数学教案2021(精选3篇)

在教学工作者实际的教学活动中,常常需要准备教案,教案是教学活动的依据,有着重要的地位。那要怎么写好教案呢?为大家精心整理了苏教版四年级上册数学教案2021(精选3篇),在大家参照的同时,也可以分享一下给您最好的朋友。

最新苏教版小学数学四年级上册教案 篇1

教学目标

知识与技能:●使学生知道生活中有比万大的数;●使学生进一步认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位。

过程与方法:使学生经历揭示各计数单位间的关系的过程,掌握数位顺序表,理解位值的概念。

情感、态度和价值观:体会大数在生活中的广泛应用,培养学生在实际生活中寻找数学信息的意识和能力。

重点:认识计数单位“万、十万、百万、千万和亿”。

难点:掌握每相邻两个计数单位之间的关系。

教具:图片和计数器

教学过程:

一、 复习导入:

1、我们以前都认识过哪些数?

2、数数:1)从689一个一个的数到712。 2)从420一十一十的数到540 3)从910一十一十的数到1000 4)从200一十一十的数到1000

3、在生活中你见到过哪些比较大的数?

4、出示图片:

在日常生活和生产中,我们经常用到比万大的数。北京市人口:13819000人,请学生试着读一读。

这节课我们就来研究更大的数,板书课题:亿以内数的认识

二、探究新知

1、请学生拿出计数器,一千一千地数,当数到10个一千时问:一千一千地数,10个一千是多少?

强调:千位上的10个珠子怎么办?

2、请学生10个10个地数,当数到10个一万时问:是多少?利用计数器问:怎么表示10个一万?

3、照这样继续数下去。10个十万是多少?10个一百万是多少?10个一千万是多少?。

师:一、十、百、千、万、十万、百万、千万都是计数单位。

想一想:每相邻两个计数单位之间是什么关系?

4、把所学数位按数位顺序表排列起来

亿级 万级 个级

亿 千 百 十 万 千 百 十 个

万万 万

位 位 位 位 位 位 位 位 位

1 3 8 1 9 0 0 0

表示8个十万

每个计数单位都要占一个位置,按照我国计数的习惯,每4个数位是一级。

说一说其他数位上的数各表示多少?

三、巩固新知

1、 “做一做”的1题数数

2、 “做一做”的2题说一说生活中哪些地方用到万以上的数。

2020苏教版四年级数学教案 篇2

设计理念:

新课程标准指出:要注重学生经历观察、操作、推理、想象等探索过程中形成的能力,使学生在理解知识的发生过程中,主动建构自己的知识体系。针对本节课题学习内容的现实性,我是这样设计的。

1、 国庆60周年情境引入,通过分类感受精确数和近似数。“分类思想”是贯穿义务教育阶段的重要思想。我通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又是通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。

2、 借助数线,直观感受“四舍五入”法求近似数的道理。首先,结合数线图,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,建立直观表象。然后丰富拓展,归纳1万多的近似数在什么情况下是1万,在什么情况下是2万。理解“四舍”和“五入”规定的合理性,了解“四舍五入”法的道理。

3、 合作学习,探究“四舍五入”法求一个数的近似数。这部分是教学的难点,分为两个层次。一是同桌合作学习:在本环节中,直接选择一个大一点的六位数,既尊重学生的知识基础,加深了数学理解,又在同桌合作突破难点的同时,发展学生的思维,培养了合作学习的能力。二是集体学习:探究把233482“四舍五入”到不同数位的近似数,归纳推理得出用“四舍五入”法求近似数的方法。

4、 练习巩固,个性化讲解促进个别化指导。从数的分类和求近似数两个方面进行练习巩固,并通过个别指导,生生交流、师生交流,帮助学生解决出现的问题,逐步清晰所学知识,最终形成技能,促进不同学生得到不同的发展。

教材分析:

“近似数”是北师大版小学数学第七册第一单元“认识更大的数”中的第五课。这部分内容既丰富了对大数的认识,又是对后续学习除法“试商”的基础。另外,近似数在生活中有着广泛的应用,当很难得到或不需要得到精确数,或是用大数描述事物时,人们经常会选择近似数。因此,无论在生活中还是在知识的衔接上近似数都显得至关重要。

学生收到前面计算教学中估算的影响,以及学生自身的经验积累,很多学生在课前已经可以凭借数感找出万以内数的近似数,也有一部分学生了解甚至可以用“四舍五入”法来求大数的近似数。但是大部分学生对“四舍五入”法只是一个模糊的认识,对于“四舍五入”法具体是什么,它的道理是什么,什么情况下运用“四舍五入”法都不是十分清楚。

四年级的学生已经进入了小学中年级段,具有一定的学习经验和合作学习的能力。

教学目标:

1、 通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。

2、 借助数线,较直观地感知“四舍五入”法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。

3、 经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数,培养数感。

教学重点:

经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数。

教学难点:

经历探索求近似数的过程。

教学方法

合作学习法 分析归纳法

教学策略:

小组合作 情境创设

教学过程:

一、情境创设,分类感受精确数和近似数。

1、观看一段国庆60周年阅兵视频,说一说有什么感受?

师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。

2、 课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。

3、 仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?

组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。

师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?

学生用自己的语言说一说。可能会说是准确的数,估出来的数。

师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。

4、 读一读以下的数据,哪些是精确数,哪些是近似数吗?

小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。

5、 你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。

师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。

【设计意图:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】

二、合作学习,自主探究。

(一)借助数线,直观感受“四舍五入”法求近似数的道理。

苏教版数学四年级上册教案 篇3

教学内容:

苏教版《义务教育课程标准实验教科书数学》四年级(上册)第30-31页。

教学过程:

一、创设购物情境,自主解决问题

(课件出示P30主题图)星期天,小军和小晴一起来到商店,想买一些学习用品。你们仔细观察,商店里都有哪些学习用品?它们的单价各是多少?

根据图中提供的信息,结 合你的购物经验,你能提出一步计算的问题吗?

一生提出问题,全班同学口答。

【设计意图:数学源于生活。呈现学生熟悉的购物情境,提出数学问题,使学生体会到数学与生活的联系。】

二、探讨含有乘法和加法的混合运算的运算顺序

1.课件出示:小军说:“买3本笔记本和一个书包,你们能帮我计算出一共用去多少钱吗?”

2.学生独立解答,教师巡视。

绝大部分学生会进行分步列式,也可能会出现个别学生列出综合算式的情况。此时先让分步列式的同学汇报,教师相应板书

先算3本笔记本多少钱?

5×3=15(元)

再算一共多少钱?

15+20=35(元)

3.提问:要求“一共用去多少钱”,先要算出什么?

你们能不能把刚才这两个算式合并成一个算式呢?

给学生尝试列出综合算式的时间和空间,允许讨论和交流,然后板书:5×3+20

4.(教师手指5×3+20)像这样的算式,它是由两个算式合在一起的一道两步算式,我们叫它综合算式。在这个综合算式里,5×3的积表示什么?20又表示什么?在计算时要先算哪一步?得数是多少?这个得数表示什么意思?

指出:在计算综合算式时,为了看清楚运算的过程,一般都要写出每次计算的结果,用递等式表示。这一步可以这样写:在第二行先写上等号(为便于第二行的算式与第一行的算式对齐,第二行的等号要写在算式稍左的位置),再写上第一步的得数,还没计算的一步要照抄下来。

板书如下(边板书,边说明书写位置)

5×3+20

=15+20

提问:接下来算什么?得数是多少?该怎么写?

指出:第二步要再写等号,等号与上面的等号对齐,然后在等号后面写出得数。

根据学生回答,完成板书。

5×3+20

= 15+20

=35(元)

5.提问:如果我们把综合算式列成这样:20+5×3,可以吗?

让学生明确:要求一共用去多少钱,就是把一个书包和3本笔记本的总价合起来,所以符合题意,是可以的。

在这个综合算式里,要先算哪一步?得数是多少?为什么也要先算5×3?

让学生自己仿照上面的书写格式进行脱式计算,教师巡视,捕捉错误资源。

可能出现的脱式计算有

①20+5×3

=15+20

=35(元)

②20+5×3

=25×3

=75(元)

③20+5×3

=15

=35(元)

④20+5×3

=20+15

=35(元)

6.出示学生作业,并逐一讲评。

引导学生思考:通过这道综合算式的计算,你认为在脱式计算时要注意什么?

7.比较5×3+20和20+5×3

=15+20 =20+15

=35(元) =35(元)

你有什么发现?学生讨论交流。

小结:在一道既有乘法又有加法的算式里,无论乘法在前还是乘法在后,都要先算乘法,再算加法。像这样含有两种或两种以上的运算,通常叫混合运算。这节课我们就来研究怎样进行混合运算。(板书课题:混合运算)

【设计意图:数学课是抽象的,有时甚至是乏味的,尤其是计算课。为了激发学生兴趣,本环节设计中给学生留有思考的空间和时间,这样学生参与的时间就多,学生发表的观点就多,学生的自信心得到了满足。】

三、探讨合有乘法和减法的混合运算的运算顺序

1.谈话:同学们真爱动脑筋,帮助小军解决了问题,小军谢谢你们。(同时课件出示:小晴说:我也想请你们帮忙,我买2盒水彩笔,付了50元,谁能帮我计算出“应找回多少元”呢?)

谁先说说准备怎么来解决这个问题?

2.学生独立列出综合算式,再把自己的解题思路和同桌交流。

全班交流:你们是怎样列出综合算式的?为什么么?

谈话:这道题含有哪些运算?与前面的综合算式比较有什么不同?应该怎样计算?现在你能用脱式进行计算吗?

学生尝试计算,教师巡视指导,捕捉错误资源。

可能出现的脱式计算有

①50-18×2

= 50-36

=14(元)

②50-18×2

=32×2

=64(元)

③50-18×2

=36

=14(元)

④50-18×2

=36-50

=14元)

根据学生的计算情况,相应进行讨论评价。

3.提问性小结:在一道既有乘法又有减法的混合运算中,我们在脱式计算时要注意些什么?要按什么顺序进行计算?

一键复制全文保存为WORD
相关文章