作为一无名无私奉献的教育工作者,总归要编写说课稿,是说课取得成功的前提。说课稿要怎么写呢?这次漂亮的小编为您带来了八年级数学说课稿(优秀7篇),希望大家可以喜欢并分享出去。
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。
二、学情分析
初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
三、教学与学法分析
叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导
为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
四、教学过程
首先,情境导入 激问设疑
给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。
其次,自主探究,获取新知
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
1. 追溯历史 解密真相
让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
2.动手操作----探求新知
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
3、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,学生将展示"割"的方法, "补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
合作交流,讲述论证
教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。
方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。
我按照"理解—掌握—运用"的梯度设计了如下四组习题。
(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用
最后、温故反思 任务后延
在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
五、板书设计
板书勾股定理,进而给出字母表示,培养学生的符号意识。
六、学习评价
本课意在创设和谐的乐学气氛,始终面向全体学生,"以学生的发展为本"的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。
一、设计思想:
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师
既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板
三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师
好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。
一、说课本:
1、课本内容:我以为可以明白为探索规则——明白规则——应用规则,进一步表现了新课标中“情境引入——数学建模——表明、拓展与应用的模式”。分式的乘除法与分数的乘除法雷同,以是可通过类比,探索分式的乘除运算规则的历程,会举行简朴的分式的乘除法运算,分式运算的效果要化成最简分式和整式,也便是分式的约分,要修业生能办理一些与分式有关的简朴的现实题目。
2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标
知识目标:(1)、理解分式的乘除运算法则(2)、会进行简单的分式的乘除法运算
能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。(2)能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。(2)、培养学生的创新意识和应用意识。(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用。
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法:
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法:
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜:;(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
(2)符号表述:×=;÷=×=。
活动目的:两种形式巩固对法则的理解。
教学效果:理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1计算(1);(2)
活动目的:抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:(1)3xy2÷;(2)÷
活动目的:让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)76页第一题,共3个小题。
教学效果:在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五。说板书设计:
主板书采用纲要式,一目了然。
(一)、分式的基本性质1、文字叙述2、符号表述
(二)、应用
末了,谈谈我的领会。讲堂上同等对话,让门生自主掌握数学,发明题目,实时纠正。讲授是让门生富厚了解。
教材简析
《统计》是义务教育课程标准实验教科书数学(苏教版)一年级上册第九单元的内容。教材首先出现实际场景生日聚会,引导同学们学习分类整理,初步学习统计,认识统计的意义和作用。
教材还安排了想想做做,内容是整理小组里同学们最喜欢吃的几种水果的人数。目的是让同学们相互协同、合作学习,体会事件发生的不确定性,进一步体会统计的过程及作用,逐步培养同学们的实践能力。
这一课时的教学重点是通过实践活动使同学们感受数据的整理过程。
教学的难点是初步感受事件发生的不确定性。
设计理念
同学们是学习的主人,新课程要求遵循同学们学习数学的心理规律,强调从同学们已有的生活经验出发,让同学们亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。《统计》这一课意在让同学们主动地参与数学活动,并通过亲手实践,经历和体会整理简单数据的过程,初步认识统计的思想和方法。
教学目标
1、通过学习数据整理,感知数学在生活里的作用。
2、经历数据的整理过程,初步认识象形统计图和统计表,获得简单统计的结果。
3、感受统计在日常生活中的应用,体会事件发生的不确定性。
4、学会有序观察、有条理地思考。
5、在合作与交流的学习中,学会肯定自己和倾听他人的意见。
教学流程
一、提供质疑的时机,唤起主角意识。
师:同学们,你们每年都过生日吗?过生日时你邀请哪些好朋友呢?爸爸妈妈是怎样为你过生日的呢?(出示主题图)今天是大象的生日。看了这张图,你们想提什么问题?
生:大象家来了哪些客人?客人送给大象哪些花呢
【这一层次从同学们熟悉的生活情境与童话世界出发,选择同学们身边的、感兴趣的过生日这一事件,让同学们自己提出有关的数学问题,通过生生互问、师生互问,实现角色转换。唤起同学们的主角意识。】
二、提供探索的机会,激活主角意识。
1、动手实践、自主探索。
(1)分类理一理。
师:这些问题都提得很好,那么谁又能解决这些问题呢?你能一眼看出每种小动物各有多少只吗?怎么办?(让同学们在小组内讨论后说说。)
生:只要把小狗放在一起,小猴放在一起,小猪放在一起。(让同学们四人小组合作操作,把小动物分类理一理,在实际场景图上找到一个动物,就在下面摆一个动物。)
指名同学们到黑板前分类整理,有的同学们将小动物分类后摆成一堆一堆的,有的同学们将小动物分类后一个对一个排成一排一排的,有的同学们是从下往上排的,有的同学们是从上往下排的。
哪种摆法比较好?通过比较,同学们知道摆成一堆一堆的不能很快看出每种小动物各有多少只。而将小动物分类后一个对一个地排好,就能比较容易地看出每种小动物有多少只。
师:分类后一个对一个地排好,我们就说是分类理一理。
【这一层次让同学们自己来思考、探索解决问题的方法,通过同学们的操作与实践去发现、经历和体会分类整理的过程,从而形成表象,激活了主角的表现力和创造力。】
(2)语言描述。
看了这张图你能告诉大象什么呢?请你和同桌说一说,同桌在说的时候,你要仔细听,听听他说的是否和你说的一样。(同学们互相说。)
刚才同学们交流得很认真,现在谁能站起来响亮地说给大家听。
像这样整理有什么好处?
【语言是思维的外壳,借助语言可使动作思维内化为智力活动,让同学们用同桌交流、全班交流的形式反复描述,既提高了同学们的语言表达能力,又有利于操作表象的形成,同时激活了主角的评价能力。】
2、独立操作、体会过程。
师:红花、黄花、绿花、紫花各有多少朵呢?请你从附页中把它们剪下来,分颜色理一理。
同学们汇报分类整理的结果。教师在四种颜色的花下板书花的朵数,再画上线,并让同学们说说从表中知道了什么?先同桌说,再指名说。
师:我们把小动物分类理一理,把花分颜色理一理,这就是统计。(揭示课题:统计)
【这一部分通过独立操作的学习方式,使同学们感受数据的整理过程,进一步培养主角意识。】
三、创设选择的空间,积淀主角意识。
师:同学们真聪明,为了奖励大家,大象拿出水果招待大家,你喜欢吃哪一种水果?把它从附页中剪下来,以组为单位理一理,并说说 从这张图中你知道了什么?
给同学们提供一些贴近生活的统计表,如听课老师年龄统计表、小组男女生人数统计表、本节课教具、学具统计表等,让同学们进行调查、整理。同学们可以独立做,也可以合作做,然后把自己最为满意的一张表介绍给大家。
【在纷繁复杂的现实世界中,每个人都面临着各种各样的选择。培养同学们的选择意识和选择能力,对同学们以后适应社会甚为重要。在这一层次,教师为同学们创设选择的空间,让同学们体味自由选择的轻松和快乐,这是积淀主角意识的有效方式。同时让同学们统计喜欢吃水果的人数,也使同学们初步感受了事件发生的不确定性。】
四、赋予总结评价权利,丰富主角意识。
引导同学们自己总结:今天你学到了什么知识?是怎么学到的?
【让同学们自己总结,不但使同学们懂得了操作实践、合作交流是一种重要的学习方法,而且提高了同学们学习的积极性,丰富了主角意识。】
一、教学目标
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。
2.会进行简单的二次根式的乘法运算。
3.使学生能联系几何课中学习的勾股定理解决实际问题。
二、教学重点和难点
1.重点:会利用积的算术平方根的性质化简二次根式。
2.难点:二次根式的乘法与积的算术平方根的关系及应用。
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。
本节难点是二次根式的乘法与积的算术平方根的关系及应用。积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足。
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。
1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要
的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段
利用投影仪。
五、教学过程
(一)引入新课 观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现 =(a,b) 也成立
(二)新课
积的算术平方根。
由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积。
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积。根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):
1、 2、 3、
说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题
今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线 》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的教学设计进行说明:
一、教材分析
(一)地位、作用
该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。
(二)、教学目标
根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生们已有的知识基础,依据教学大纲的要求,确定该节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生们观察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析
七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。
五、教学过程
(一)创设情景,引入新课
多媒体显示立交桥、防盗网。
设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。
(二)新课探讨
1、对顶角、邻补角的位置关系。
让学生们用已备好的剪刀剪纸片、向他们提出以下问题:
问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?
学生们观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。
通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。
问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?
学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。
2、对顶角的大小关系
学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:
(1)我演示教具(自己制作),也给学生们操做。
(2)让学生们通过量角器测量。
(3)让学生们把画好的对顶角剪下来,进行翻折。
(4)引导学生们根据同角的补角相等来推导对顶角相等的性质。
引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。
学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。
(三)让学生们举出生活中对顶角相等的例子
学生们可以通过合作性交流、思考、发表见解。
让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。
(四)例题解析
例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。
引导学生们先寻找已知角和未知角之间的位置关系,再寻找已知角和未知角之间的数量关系,此题难度不大,让一位学生们在黑板上板演。其他同学一起来批改。
(五)习题反馈
为了再次强化对顶角、邻补角的概念及对顶角性质的理解,我适当增加些练习,对于习题,循序渐进提高难度,让不同层次的学生们都得于提高,对于趣味题和拓展题,学生们通过思考,讨论,寻找规律,让他们进一步感觉“知识来源于实践”,同时学生们的思路得于拓展。
(六)、课堂小结
1、这节课学了哪些概念和性质?
2、你还有什么疑惑?
3、谈谈你对该节课的收获。
将该节课所学知识进行回顾和梳理,进一步培养他们归纳,总结能力。
(七)布置作业
我布置了必做题和选做题,为学生们提供个性化发展的空间,及时了解学生们的学习效果,使学生们养成独立思考,反思学习过程的习惯。
六、板书设计(略)
活动1.创设情景
[教学内容1]
生活中有很多数学问题:
小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连。
问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看一看。
[整合点1]利用多媒体渲染气氛,激发情感。
教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论。引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题。
[设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备。
活动2.探究体验
[教学内容2]
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。出示仪器模型,介绍仪器特 点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线。
教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线。
[设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题。
从上面的探究中可以得到作已知角的平分线的方法。
[教学内容3]
把简易平分角的仪器放在角的两边时,平分角的`仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程。
[设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳。
教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性。
利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程。
[教学内容4]
作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系。并在此基础上再作出一个45o的角。
学生独立作图思考,发现直线AB与CD垂直。
[设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的。
[教学内容5]
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
学生动手剪纸,折叠,教师在多媒体上演示折叠过程。学生观察思考后,在班上交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边 的距离,它们的长度相等。
[设计意图]培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫。
[教学内容6]
如图:按照折纸的顺序画出角及折纸形成的三条折痕。让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质。