《《3的倍数的特征》的教学设计【优秀12篇】》由精心整编,希望在【3的倍数】的写作上带给您相应的帮助与启发。
学习内容:3的倍数的特征
学习目标1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。
学习重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
学习难点:3的倍数的数的特征的归纳过程。
教学准备:
小棒、数位表
学习过程:
自主学习(我能行)
一、知识链接:
(1)个位上是( 、 、 、 、 )的数,是2的倍数。叫( )数,也叫( )数。
用3、4、5这三个数字来组成是2的倍数的三位数有( )
(2)个位上是( 、 )的数,是5的倍数。用3、4、5这三个数字来组成是5的倍数的三位数有( ),
(3)个位上是( )的数,既是2的倍数,又是5的倍数。
二、新知学习
在复习2、5的倍数的特征后,教师让学生猜猜3的倍数有什么特征,学生思考后,大胆进行猜想:
学生甲:个位上是3、6、9的数是3的倍数。
学生乙:个位是0、1、3、5、7、9的数是3的倍数。
学生丙:个位是0、3、6、9的数是3的倍数。
……
(一)寻找规律,展示自我
3,6,9,( ),( ),( ),( ),( ),( ),( )
48,51,54,( ),( ),( ),( ),( ),( ),( )
102,105,108,( ),( ),( ),( ),( ),( ),( )
这些数是3的倍数吗?观察这些数,你对3的倍数有什么新的发现呢?
这些数的个位可能是0~9中的任意一个数,所以从数的个位上无法找到3的倍数的特征。
(二)、否定自我,破茧重生。(探索3的倍数的特征)
123,321,132,
405,540,450
这些数是3的倍数吗?看了这两组数,你敢披荆斩棘另辟一条新的思路,来寻找3的倍数的特征吗?(利用小棒、数位表,小组分工合作进行研讨,记录员认真记录每位组员的大胆猜想及小组验证的过程。)
根据每组数字一样,猜想可能是各个数位上数字和有关。
(三)兵分两路,正反验证。
女同学验证各个数位上数字和是3的倍数的数就是3的倍数。(数例)
男同学验证各个数位上数字和是3的倍数的数不是3的倍数。(数例)
分组小组交流
得出结论我发现:一个数各个数位上的数字的( )是3的倍数,这个数就是3的倍数
三、巩固新知
练习:(1) 下面哪些数是3的倍数?
29 84 45 54 108 180 801
(2) 不计算,你能很快说出哪几题的结果有余数吗?
48÷3 57÷3 342÷3
(3) 在下面每个数的□里填上一个数字,使这个数是3的倍数。
① 4□ ② 3□5 ③ 12□ ④ □12
小组交流得出方法:
四、学习小结:
闯关达标(我最棒)
轻松第一关:
1、3的倍数的特征是( );请把3的倍数圈起来:
11 12 13 14 15 16 17 18 19 20
91 92 93 94 95 96 97 98 99 100
2、小小法官
(1)个位上是3、6、9的数,都是3的倍数。 ( )
(2)75既是5的倍数,又是3的倍数。 ( )
跨越第二关:
1、 写出6个3的倍数( )
2、在1——20自然数中,找出3的倍数:( ) 找出5的倍数( );找出既是2的倍数又是5的倍数( ),找出同时是2、3、5的倍数的数( )
教学目标:
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
教学重点:
认识3的倍数的特征。
教学难点:
研究并发现3的倍数的特征。
教学准备:
准备计数器教具和学具。
教学过程:
一、激活经验
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)
二、学习新知
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
启发:当你发现3的倍数的特征时,你对数学有什么感觉?
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?
三、练习巩固
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
一,复习引新
1, 用5,6,7三个数字组成一个三位数,使这个数是2的倍数 说说什么样的数一定是2的倍数 可以摆成5的倍数吗 说说怎样摆 什么样的数是5的倍数
2, 引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗 今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)
二,排列中感受奇妙
1, 谈话:我们班有50个同学,现在每个同学手中都有一张写有自己学号的卡片,请大家判断一下,自己的学号数是3的倍数吗 (稍停,让学生完成判断)请学号数是3的倍数的同学把卡片贴在黑板的左边,不是3的倍数的,卡片贴在黑板的右边。
2, 提问:请观察一下,根据一个数个位上的数字,能确定一个数是3的倍数吗 (不能)那么3的倍数究竟有什么特征呢
3, 抽取黑板左边3的倍数12和21.
(1) 谈话:比较这两个数,你能发现什么有趣的现象 (数字相同,数字排列的顺序不同)
(2) 提问:在左边3的倍数中,再找几个数,把他的数字顺序改变一下,看看还是不是3的倍数 你有什么发现 (一个3的倍数,改变数字的顺序后,仍然是一个3的倍数。)
(3) 在右边不是3的倍数的数中,也有这样的数,你能把他们一组一组地排列起来吗 (13,31;14,41;23,32;25,52;34,43;)这里又说明什么呢 (一个不是3的倍数,改变数字的顺序后,仍然不是3的倍数)
(4) 到现在,我们可以推想,3的倍数的特征和数字的排列顺序没有系,但和这个数的各个数位上的数字有关,这里到底有什么奥秘呢
三,操作中发现规律
1, 活动:每个同学手中都有一些小棒和一张数位表,我们在数位表上分别来摆几个3的倍数,看看分别用了几根小棒,现在请你在3的倍数中任意选几个来摆一摆,开始。
2, 学生在小组中完成并记录,然后汇报,教师板书如:12:1+2=3;
3, 提问:对于小棒的根数你有什么发现 (都是3的倍数)
4, 下面我们反过来试试看,请你数出3的倍数根小棒,摆成一个两位数或三位数,看看这个数是不是3的倍数。(学生操作后汇报结果)
5, 提问:摆每个数所用的小棒根数就是这个数的什么 现在你觉得什么样的数一定是3的倍数 (3的倍数,它的各位数的和一定是3的倍数)
6, 教学试一试:如果一个数不是3的倍数,这个数各数位上数字之和会是3的倍数吗 请你找几个不是3的倍数算一算看。你得到什么结论 (各数位上数字的和不是3的倍数,这个数就不是3的倍数)
7, 你能把刚才发现的结论和现在这个结论连起来说一说吗
四,练习中提升认识
1, 完成"想想做做"第1题
学生独立完成判断,并把题中3的倍数圈出来。
组织交流:哪些数是3的倍数 你是怎样判断的
明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数。
2, 完成"想想做做"第2题
启发:这几道除法算式有什么共同特点 如果一个数除以3没有余数,说明这个数和3是什么关系 反过来,如果一个数是3的倍数,那么这个数除以3会有余数吗 你打算怎么判断
学生各自做出判断,在组织交流。
3,完成"想想做做"第3题
填什么数字能使这个两位数是 3的倍数 你为什么填这个数 你是怎么想的 还可以填哪些数
4,完成"想想做做"第4题
先让学生按要求操作,交流:你是怎么找9的倍数的 9的倍数都是3的倍数吗 反过来,3的倍数都是9的倍数吗 请举例说明。
5,完成"想想做做"第5题
提问:每次要选几张卡片 要使组成的三位数是3的倍数,这三张卡片上的数要满足什么要求
学生动手选一选,并把每次组成的三位数记下来。
组织交流:你选了哪三张卡片 为什么选这三张呢 用这三张卡片能组成几个不同的三位数 还可以选哪三张卡片 用这三张卡片又能组成哪几个3的倍数 这样的三位数一共有多少个
五,全课总结
3的倍数有什么特征 判断一个数是不是3的倍数,你会怎么判断
教学目标:
1, 使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数
2, 使学生在探索3的倍数的特征的过程中,进一步培养观察,比较,分析,归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。
教学重点:使学生掌握3的倍数的特征,会判断一个数是否是3的倍数
教学难点:探索3的倍数的特征
教学准备:有学号的卡片;学生准备小棒若干。
2,3,5的倍数特征(一)
第1课时2,3,5的倍数特征(一)
【教学内容】
教科书第129~130页例1、例2及课堂活动第1~2题,练习二十七的第1~3题。
【教学目标】
1认识奇数和偶数,知道2,5的倍数特征,会判断一个数是不是2,5的倍数。
2经历探索2,5的倍数特征的过程和圈数、涂色、走迷宫等数学活动,培养观察、归纳、概括的能力,体验不完全归纳的数学思想。
【教学重点】
探索2,5的倍数特征,认识奇数和偶数。
【教学难点】
理解为什么2,5的倍数的特征与它们的个位有关。
【教学准备】
学生搜集生活中的自然数:全校学生人数、班级人数、邮政编码、工资等。
【教学过程】
一、设疑引入1谈话引入
教师:我们知道生活中的很多信息与数有关,例如全校学生人数是1876人,全年级有265人,本地区的邮政编码是400700……请同学们汇报一下课前所搜集到的生活中的自然数。
教师根据学生的汇报板书:5,1,40,22,18,25,265,1395,1876,310016,400700,7220……
教师:如果现在我们把黑板上的人数、邮政编码、工资都看成一个数,你们能不能马上判断出哪些数是2的倍数?哪些数是5的倍数?
2揭示课题
教师:今天我们就来研究2,5的倍数究竟有什么特征。
二、探究新知
1认识奇数和偶数(教学例1)
教师:要研究2的倍数特征,就先找一些2的倍数来观察。请说说,2的倍数有哪些?(2,4,6,8,10……)2的倍数说不完,说明2的倍数有无数个。
教师:观察2,4,6,8,10……它们是2的倍数,也就是能被2整除的数。知道这样的数叫什么吗?(偶数)偶数也就是平常所说的双数。偶数是几的倍数?偶数能被几整除?0是不是偶数呢?你是怎么想的呢?(0能被2整除,0是偶数。)
教师:偶数有一个好朋友,知道是什么数吗?(奇数)怎样的数是奇数?(不能被2整除的数是奇数,也就是平常所说的单数。)
试一试:哪些数是偶数?哪些数是奇数?
79299
教师:判断一个数是奇数还是偶数,关键是看什么?(看这个数能不能被2整除,能被2整除就是偶数,否则就是奇数。)
2探索2的倍数特征
教师:“试一试”中的2的倍数有什么特点?(个位上是0,2,4,6,8)个位上是1,3,5,7,9不行吗?请任意写一个个位上是单数的数,验证一下你们的结论。
教师:看来2的倍数个位上一定是0,2,4,6或8。(板书:2的倍数特征是:个位上是0,2,4,6或8)
3探索5的倍数特征(教学例2)
教师:5的最小倍数是多少?
学生:是5。
教师:你还能说出5的倍数有哪些吗?把5的倍数按从小到大的顺序排列,仔细观察,你有什么发现?
学生:我发现这些数的个位上的数是0或5。
教师:是不是任何自然数,只要是5的倍数,个位上一定是0或5?请同学们任意写一个5的倍数验证一下。
小结:不管是几位数,5的倍数的个位上一定是0或5。(板书:5的倍数特征是:个位上是0或5)
试一试(第130页):下面哪些数含有因数5?它们是5的倍数吗?
512203539
三、课堂活动
(1)(第130页)第1题:涂色找规律。
按要求完成后,观察到同时涂上红色和蓝色的格子里的数是10的倍数,也就是同时能被2和5整除的数。那么2和5共同的倍数有什么特点呢?(个位上是0)
(2)(第130页)第2题:怎样才能走出迷宫?
(3)猜一猜:一个自然数不是奇数就一定是偶数。对不对?为什么?
得出:
四、课堂总结
今天这节课我们学了什么?你怎样学会的?
五、作业
练习二十七第1,2,3题。
第2课时2,3,5的倍数特征(二)
【教学内容】
教科书第131~132页例3及课堂活动,练习二十七的第4~8题。
【教学目标】
1经历探索3的倍数特征的过程,知道3的倍数特征,会判断一个数是不是3的倍数。
2培养观察、归纳、概括的能力,体验不完全归纳的数学思想。
【教学重点】
探索3的倍数特征。
【教学难点】
理解为什么3的倍数特征与它各位上的数字和有关。
【教学准备】
每人准备10个小圆片(可用纽扣、棋子代替),第130页课堂活动中的6张数字卡片。
【教学过程】
一、引入(1)游戏:听数打手势。(判断能被2,5整除的数)
投影出示:这个数若能被2整除,则出示左手2个手指;若能被5整除,则出示右手5个手指;若能同时被2,5整除,则出示两只手。
8209646000
问:你是根据什么来判断的?
看一个数是不是2,5的倍数,可以根据这个数个位上的数字来判断。
(2)请同学们大胆猜想一下,如何判断一个数是不是3的倍数?(学生可能认为是看个位)谁能举例找一个数来说明自己的观点?
(3)3的倍数有没有特征呢?如果有,是什么特征呢?今天这节课我们就来研究3的倍数特征。(板书课题:3的倍数特征)
二、探究新知
1摆一摆,找规律(教学例3)
将一些小圆片放在图中(第131页)表示成一个一位数或两位数。再填表,判断所组成的数是不是3的倍数。
教师示范:用3个小圆片摆成数12,并示范完成表格中的第1列。
让学生拿出小圆片,同桌合作将它们摆在书上的数位图中,(圆片可重叠摆放)并填表。
比一比:在规定的时间内摆一摆、填一填,看哪组完成得,合作得。
教师:用3个圆片还能摆成哪些数?这些数都是3的倍数吗?
想一想:观察上表,你发现了什么?3的倍数与圆片个数有什么联系?
(1)圆片个数是3的倍数,所组成的数就是3的倍数;
(2)圆片的个数等于所组成的数的各数位上数字之和;
(3)3的倍数中各数位上数字之和能被3整除。 ……
小结:组成的数各数位上数字之和等于圆片个数,圆片个数是3的倍数时,所组成的数就是3的倍数。一个数各数位上数字之和是3的倍数,这个数就是3的倍数。
2试一试
学生翻开书第132页,在方格中把3的倍数做上记号。
算一算:在表中任取一个3的倍数,把它的个位上数字与十位上数字相加,和是3的倍数吗?
教师:请同学们任意写一个能被3整除的数,验证一下,是不是所有3的倍数各数位上的数字之和一定能被3整除。
3概括3的倍数特征
教师:请同学们根据刚才摆一摆的实验和试一试的验证,用自己的话说说:3的倍数有什么特征?
概括:一个数,如果各数位上数字之和是3的倍数,这个数就是3的倍数。
教师:如何判断一个数是不是3的倍数呢?
4练习
出示开课时的游戏中的数:
8209646000
哪些是3的倍数?
四、课堂活动
(1)第133页课堂活动。
(2)在下面每个数中的□里填上1个数字,使这个数有因数3。各有几种填法?
□74□2□4456□
(3)快速说出下面哪些数有因数2,哪些数有因数3,哪些数有因数5。
1867324335
五、课堂总结
教师:今天这节课我们学了什么?你怎样学会的?
六、作业
(1)练习二十七第4,5,6题。
(2)思考题:
先求出下面每个数各位上的数的和,看能不能被9整除,再算一算下面各数能不能被9整除,最后总结出9的倍数特征是什么。
22988
教学过程:
一、课前准备
1.上节课我们认识了倍数,那么什么是倍数?请举例说明。
2.你对倍数还有什么认识?
一个数的最小倍数是它本身,一个数的倍数的个数是无限的,没有最大的倍数。
二、创设情境
师生进行猜数游戏,学生说出一个自然数,教师马上判断是否是2、5的倍数。由此引入学习的需求。
师:同学们,今天老师和你们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。
学生报数,老师答,同时请大家验证。
你们想知道老师是怎么判断得这么快吗?这节课我们就一起来探讨 2、 5倍数的特征。(板书课题)
二、教学实施。
1、探索2的倍数的特征
(1)师:我要请学号是 2的倍数的部分同学起立,并报出自己的学号是多少。(教师有意识地指名,教师板书。)
2 4 6 8 10 12 24 28 30 36 40
让学生观察这些数,说说有什么发现?(双数 )双数都是2的倍数,你发现2的倍数有什么特征?请同学们独立思考后同桌讨论,老师巡视。
(2)指明汇报。(2~3名 )
师根据生的汇报概括并板书:个位上是0、2、4、6、8的数都是2的倍数。
(3)举例验证。
师:那是不是所有个位上是0、2、4、6、8的数都是2的倍数呢?这个规律是不是适用于所有的数呢?请同学们写些较大的数来验证一下吧。
生举例验证并交流。指名汇报,并说说是怎么验证的?
(4)小结:师:由于2的倍数的个数是无限的,无法一一验证,我们通过举例验证一些数,结果是符合上面的规律的。今后我们在判断一个数是不是2的倍数,只要这个数的个位上是0、2、4、6、8,就是2的倍数。
2、学习奇数、偶数的概念。
关于一个数是不是2的倍数,还有很多知识,你们想知道吗?
(1)自学教材第17页的奇数、偶数的含义。
(2)师:通过自学,你学道了什么?
生汇报交流。
师: 像 2、 4、 6、 8、 10……这些 2的倍数都是偶数,也叫双数。(教师可作说明: 0也是偶数,但是在这一节里我们研究的自然数一般不包括零。)像 1, 3, 5, 7, 9……这些不是 2的倍数的数都是奇数,也叫单数。
那么自然数可以分成哪两类?(偶数和奇数)
3、练习:
第17页做一做
4、探索5的倍数的特征。
(1)分组探索。
师:2的倍数的特征同学们都很清楚了,那么5的倍数又有什么特征呢?请你们小组合作,共同探讨,然后大家交流。
看书第18页,自学。
(2)汇报交流,你发现了什么?
根据学生的回答板书:个位上是 0或 5的数是 5倍数。
(3)举例验证。
师:同样,那是不是所有个位上是0或5的数都是5的倍数呢?这个规律是不是适用于所有的数呢?请同学们写些较大的数来验证一下吧。
生举例验证并交流。指名汇报,并说说是怎么验证的?
5、练习:第18页做一做。
学生汇报后问:既是2的倍数也是5的倍数有什么特征?
板书:个位上是0的数既是2的倍数也是5的倍数。
6、小结:我们已经知道了2的倍数和5的倍数的特征,以及既是2的倍数也是5的倍数的特征,下面我们就来练习几道题检验同学们掌握的情况。
三、巩固练习。
1、判断。
(1)自然数中不是奇数就是偶数。
(2)个位上是0、 2、 4、 6、 8的数是偶数。
(3)是5的倍数的数的个位上不是0就是5。
(4)最小的两位偶数是12。( )
(5)同时是2、5的倍数的数的个位上一定是0。
2、根据要求,在 □里填上合适的数:
要使 34□是 2的倍数, □里可以填( )。
要使 34□是 5的倍数, □里可以填( )。
要使 34□既是 2的倍数,又是 5的倍数, □里可以填 ( )。
3、用2、4、0组成符合下列要求的三位数。
(1)是2的倍数。
(2)是5的倍数。
(3)同时是2、5的倍数。
4、猜电话号码:
第一位:最小的 5的倍数。
第二位:最小的奇数。
第三位:最大的一位奇数。
第四位:最小的偶数。
第五位:是 2的倍数的最大的一位数。
第六位:比最小的奇数大 1。
第七位:不知道,但我的电话号码既是 2的倍数,又是 5的倍数。
四、课堂小结。
通过今天的学习,你有什么收获?
教学目标:
1.经历探索2、5倍数特征的过程,理解2、5倍数的特征,能判断一个数是不是2或5的倍数。
2.知道奇数、偶数的含义,能判断一个数是奇数或偶数。
3.在观察、猜测、讨论过程中,提高探究问题的能力。
教学重点:让学生经历探索知识的过程,找出2和5的倍数的特征。奇数、偶数的含义。
教学难点:经历探索2、5倍数特征的过程,归纳2和5的倍数的特征。
教学策略:1、在观察、猜测、讨论过程中,认识2和5的倍数的特征。
2、在活动中交流,探索找2和5的倍数方法。
教学内容:
北师大版数学五年级上册6—7页的内容。
教学目的:
1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。
2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。
3、通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣
教学重点:
理解3的倍数的特征。
教学难点:
探索活动中,发现规律,并归纳出3的倍数的特征。
教具准备:
实物投影仪、数字卡片等。
学具准备:
每人几张数字卡片。
教学过程:
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
板书课题:3的倍数的特征。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)
(二)活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的各个数字加起来试试看
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1) 自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试
在下面数中圈出3的倍数。
28 45 53 87 36 65
(先自己圈,然后说说你是怎样判断的?)
(四)活动四:练一练
1、请将编号是3的倍数的气球涂上颜色。
36 17 54 71 45 48
(自己独立完成,在小组内说说自己的想法。)
2、选出两个数字组成一个两位数,分别满足下面的条件。
3 0 4 5
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5 的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)
(五)活动五:实践活动
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)
三、总结。
通过这节课的学习,你有什么收获?
板书设计:
课题:探索活动(二)3的倍数的特征
1、在下面数中圈出3的倍数。
28 45 53 87 36 65
2、选出两个数字组成一个两位数,分别满足下面的条件。
3 0 4 5
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5 的倍数。
(4)同时是2,3和5的倍数。
内 容:3的倍数的特征 课 型:新知探究
主备人:张三丰 审核人: 授课时间: 月 日
学
习
目
标
1.探索3的倍数的特征。
2.会判断一个数是不是3的倍数。
学习
重点
探索3的倍数的特征。
学习
难点
会判断一个数是不是3的倍数。
时间预设
学习过程:
一、知识链接:
实验小学四年级师生为四川灾区小学捐款5844元。
(1)如果将这些钱平均分给2所贫困学校,不计算你能知道每所学校得到的钱数是整元数吗?2的倍数有什么特征?
(2)如果将这些钱平均分给5所贫困学校,不计算你能知道每所学校得到的钱数是整元数吗? 5的倍数有什么特征?
猜想:这个数是3的倍数吗?你猜想什么样的数是3的倍数?
二、探究新知
1、在百数表中找出所有3的倍数,并做上记号。
2、验证。
每组任举两个数,写在下面的横线上。
小组合作验证(为了验证的广泛性,不同的小组举不同位数的例子,并用计算器帮助计算)。①________ ②________
第①个数各位上数字和是____,数字和____(填:是或不是)3的倍数,再用计算器计算,这个数____(填:是或不是)3的倍数。
第②个数各位上数字和是____,数字和____(填:是或不是)3的倍数,再用计算器计算,这个数____(填:是或不是)3的倍数。
通过验证,认为猜想成立的请在( )里画“√”,认为不成立的在( )画“x”。
猜想:一个数各位上数的和是3的倍数,这个数就是3的倍数。( )
三、反馈练习:
1.判断83能否被3整除。
2.在下面□里填上一些数,使这个数有因数3,你有几种填法。
1□7 58□0
2、.解决问题。
(1)老师的年龄既是2的倍数,又是5的倍数,又能被3整除,老师今年岁。
(2)三年一班,人数在30—40之间,而且能同时被2和3整除,这个班有名学生。
四、考考你自己
1、哪些数是3的倍数?把它们圈出来。
42 49 78 27 32 98 43 58 96 12 87
2、他们都3的倍数,方框里该填几?
(1)213□213□213□213□
(2)68□4□35 6□0□
教后记:
2、5的倍数特征有共同之处,既都要关注个位上的数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。
在教学既是2又是5的倍数的特征时,我没有让学生通过做课本上的习题总结结论,而是通过让学生说自己的学号,谁是2的倍数,谁是5的倍数,然后自然的追问一句:“为什么有的同学举了两次手?”全体学生幡然醒悟,原来这几个同学的学号既是2,又是5的倍数,很自然的找到了既是2又是5的倍数的特征,我感觉这一个环节的设计非常自然,贴近学生实际。这是我认为比较成功的地方。
不足之处:
1. 营造民主、宽松的学习氛围不够。
课堂气氛在很大程度上影响着学生学习过程中创造性的发挥。这节课一开始教师营造气氛不很到位。后来气氛有所缓和。
2 .总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。
3 .本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。
《2和5的倍数特征》说课稿
根据新课程标准,对于本节课我将以教什么,怎么教,为什么这样教为思路,从教材分析,学情分析,教学方法,教学过程几个方面加以说明,首先谈谈我对教材的理解。
一、说教材
本节课选自人教版小学五年级下册内容。这部分内容是在学生掌握了倍数概念的基础上进行教学的。它是学好找因数、求公约数和最小公倍数的重要基础,对以后学习约分、通分知识做了一个很好的铺垫,同时对学生的观察能力及自主探究能力的提升有很大作用。因此,掌握2、5的倍数的特征,对于本单元的内容具有十分重要的意义。
二、说学情
教材是上好一节课的前提,但教学活动的主体是学生,因此,除了对教材理解外还要对所教授的学生很了解。我所教授的五年级学生正处于生长发育阶段,思维还在发展中,好表现,爱思考,对于新的知识感兴趣,但他们自制力差,注意力集中时间段,要在短时间内让他们对本节课的知识掌握有难度,所以老师应该加以正确的引导。
三、教学目标
基于以上对学情和教材的分析,我确定了本节课的教学重难点
知识与技能目标:学生掌握2、5的倍数的特征并能够掌握判断方法。
过程与方法目标:通过自主探究,讨论等方法,会判断一个数是不是2、5的倍数。
情感态度与价值观目标:通过学习,增强学习数学的兴趣,养成勤于思考的学习习惯, 逐步养成类推能力及主动获取知识的能力。
结合教学目标,我确定本节课的重难点为:
四、教学重难点
重点:掌握2、5的倍数的特征及奇数、偶数的概念。
教学:掌握既是2的倍数,又是5的倍数的特征。
为了突出重点,突破难点,顺利达成教学目标,我将采用的教学方法有:
五、教学方法
讲授法,自主探究法,小组讨论法。
六、教学过程
新课标要求学生是学习的主体,教师是引导者,组织者,下面我将从四个方面谈谈本节课的教学过程。
1.新课导入
我会在多媒体上呈现一些数字,4,6,8,10,15,16,20,25......,紧接着让学生回顾之前所学的倍数概念,找出2、5的倍数。在学生找出来后,我会让他们以小组为单位,观察这些数字,并看看有什么特点?从而,导入今天的新课。这样设计不但可以帮助学生巩固以前的旧知识,还可以帮助他们培养思维能力。
2.新课教学
待他们讨论结束后,我会出示百数表,以提问的方式请不同的同学说出2的倍数有哪些特征,5的倍数有哪些特征,并对他们的回答加以引导完善,从而总结出2、5的倍数特征:
2的倍数特征:个位上是0,2,4,6,8的数。
5的倍数特征:个位上是0和5的数。
紧接着引导同学观察自然数及其2的倍数,通过观察,2的倍数全是双数,从而引出偶数和奇数的概念。
这样设计不但可以锻炼学生的观察能力,同时还可以锻炼他们的自主探究学习能力,而且突出了本节课的重点。
3.巩固提升
我会在多媒体上呈现一些数字,让同学们判断哪些是2的倍数,那些事5的倍数。之所以这样设计是因为能够让学生对本节课的知识加以理解掌握,同时突破难点。
4.小结作业
我会请一位同学说说本节课的收获,同时给他们留一个小任务,课后探究3的倍数特征。这样不但能提升学生的归纳总结能力还能拓展他们的思维。
七、说板书
我的板书注重突出重点,简单明了,便于学生理解本节课知识。
2、5的倍数的特征
1.2和5的倍数特征:
2.奇数和偶数
八、教学反思
下面是人教版数学五年级下册 《3的倍数特征》说课稿,欢迎阅读!
一、教材分析
《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:
1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。
3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的
教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点: 3的倍数的数的特征的归纳过程。
二、教法和学法。
根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:
1、创设情景,激趣导入。
2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。
3、采用让学生自主发现的学习方法。
苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
下面重点说说本课的教学过程设计,我分以下的六个环节进行教学。
三、教学过程。
一、 复习导入。
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
364、420、515、736、1028、905
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
二、 猜想验证。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
三、 体验新知。
由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。
3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21 ……
并引导学生进行观察发现:3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报结果给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。
四、归纳总结。
在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就 3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
五、实践应用。
当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。
练习1:课本P19做一做1。
(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)
练习2:①P21页(5、6题),在基本练习的基础上我增设了3道发展题。
②把数娃娃送回家。题目如下:
这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)
练习3:P21(7题)
7、在 口 里填一个数字,使每个数都是3的倍数。
口7 4口2 口44 65口 12口1
(这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)
(六)拓展延伸
为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?
纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。 我说课完毕谢谢大家!
附:设板书设计:
3的倍数的特征
一个数的各位上的数的和是3的倍数,这个数就是3的倍数。
学习目标:1. 使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。4.让学生感受生活中蕴藏着丰富的数学知识。教学重点、难点:1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。2、难点:让学生通过操作实验自主发现3的倍数的特征。教学准备:小棒、计算器、数位表教学过程:一、知识链接前面同学们已学习了2和5的倍数的特征,下面老师就来检查一下你们能用3、4、5这三个数字来组成是2的倍数的三位数吗?(学生根据教师要求组数,教师板书出学生组数的情况:354、534。)师:同学们你们为什么这样组数呢?同样用这三个数字,你们能组成是5的倍数吗?(教师根据学生组数的情况板书出:345、435。)你们是怎样想的呢?(设计意图:这样采用组数的方法,既复习了2和5的倍数的数的特征,又可为下面学习新的内容打下一定的基础,同时又激发了学生学习的兴趣。)二、新知学习(一)设疑引入如果仍用这三个数字,你们能否组成是3的倍数的数吗? 请同学们试一试。(教师根据学生组数的情况板书出:543、453。 )这两个数是3的倍数吗?(学生通过试除验证,得出这两个数都是3的倍数。)从这两个是3的倍数的数来看,你想到了什么?能被3整除的数 有什么特征?(设计意图:学生已经掌握了2的倍数和5的倍数的数的特征,在研究3的倍数的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。) (二)制造认知矛盾刚才同学们是从个位上去寻找3的倍数的“特征”的,那么个位上是3的数,它就一定是3的倍数吗?(我紧接着举出13、23、46、126、49等数让学生试除判断,从而由此引导学生推翻假设。)同学们,注意观察一下这几个数个位上的数字,个位的数字都是3的倍数,但它们的结果有的是3的倍数,但有的数却不是3的倍数,那么我们能从个位上找出是3的倍数的数的特征吗?(三)设问激趣我们再看看刚才的那3个数字,你们还能利用3、4、5这三个数字,组成一个三位数, 然后再看看它是不是3的倍数,好吗?(学生再通过3、4、5这三个数字任意组成一个三位数,通过试除发现:所组成的三位数都是3的倍数。)通过刚才的发现,那么3的倍数的特征有没有规律可循呢? 下面我们就一起来学习“3的倍数的特征。”(板书课题)(设计意图:通过设置这样一个教学小“陷阱”,引导学生提出3的倍数的特征的假设,然后推翻假设,引发认知矛盾,并再次创设问题情境让学生进行探究,这样的设计不仅有效地避免了“2和5的倍数的特征”思维定势的影响,而且进一步地激发了学生的求知欲望。)(四)操作中发现规律下面我们来做几个小活动,要求同桌之间互相合作完成。1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆出一个两位数或三位数,然后再用计算器进行验证(例如:用3根小棒摆出两位数:个位摆1根,十位摆2根,组成21……)请把摆出的数填在下面的表中:
小棒的根数 摆出的数 3的倍数 不是3的倍数
学生完成操作并填写表格。问:你摆了哪些数啊?(根据学生回答,填表)这些数都是3的倍数吗?(请在表里画“√”)追问:用3根小棒能摆出一个不是3的倍数的数来吗?(通过这样的设问,充分调动学生的求知欲望) 如果有学生认为能摆出一个不是3的倍的数来,就请他自己在下面摆一摆,然后一起验证,再下结论。2. 活动二:再请同学们拿出5根小棒,按刚才的方法在数位表上摆出几个两位数或三位数,看摆出的数是不是3的倍数。(学生合作操作并填写表格。)问:用5根小棒摆出的数是3的倍数吗?追问:用5根小棒能摆出一个是3的倍数吗?(学生验证后回答)(设计意图:用实验操作的方法来教学3的倍数的特征,改变了以往先列举几组3的倍数和不是3的倍数的数字,然后引导学生归纳特征的教法。这样做,不但提高了数学知识本身的趣味性,而且让学生更好地经历了探究3的倍数的特征的过程。先让学生用3根小棒摆出3的倍数,学生非常投入地去摆数,结果成功了。再用5根小棒去摆,可就是摆不出3的倍数来,从而产生了很大的困惑。学生的困惑越大,继续研究的欲望就越强, )3. 活动三:请同学们自己选择小棒的根数摆一摆,再按照刚才的摆法把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么?(学生合作完成活动,并在小组里交流。)问:你选择的是用几根小棒摆的啊?结果怎样呢?你发现了什么?(如果小棒的根数是3的倍数,摆出的数就一定是3的倍数;如果小棒的根数不是3的倍数,摆出的数就不是3的倍数……)4. 活动小结:通过刚才的活动,我们发现3的倍数的一些特点,谁能归纳一下是3的倍数的数有什么特征吗?得出结论:一个数各位上数的和是3的倍数,这个数就是3的倍数(设计意图:通过学生任意选取小棒数量来进行实验和全班学生的汇报,让学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律,从而更好的获得相应的知识。)5.看书质疑(通过活动总结了结论,再让学生看书,来发现问题,从而加深了学生对新知的认识。)三、达标检测:通过实验,我们现在已经知道3的倍数的特征,你能运用这一规律来解决一些简单问题吗?1、完成课本第51页的做一做的第4题。(简单说说理由)2、说一说。(同桌间合作,一问一答,1人随便说一个数让另1人猜该数是否是3的倍数。要求所说的数尽量别超过4位,然后调换角色。)3、在下面每个数的□里填上一个数字,使这个数是3的倍数。 它们各有几种不同的填法? □7 4□5 □44 65□引导学生掌握科学的填数方法:(1)先看已知数位上的数字的和是多少;(2)如果已知数位上的数字和 是3的倍数,那么未知数位的□里最小填“0”,要填的其它数字可依次加上3;如果已知数位上的数字和不是3 的倍数,那么未知数位的方格里可先填一个最小的数,使它能与已知数位上的数字的和凑成是3的倍数,要填的其它数字可在此基础上依次加上3。4、玩学号小游戏(上课前已分工好,按顺序一个号码代表一个学生,即“学号”)同学们刚才的题目完成得很精彩,最后我们再来玩一个小游戏。同学们都知道自己的学号是多少吧?那我们就来玩一个关于学号的游戏。请听:如果你的学号是2的倍数请你站起来;如果你的学号是5的倍数请你站起来;如果你的学号是3的倍数也请你站起来。刚才老师发现有些同学好象站起来2(3)次哦?你为什么要站起来2(3)次呢?请你用一句话说明理由。(重点突出30号、60号)学生回答后,师生共同小结,得出新的结论。(设计意图:通过各种趣味性强的练习,既让学生内化了“3的倍数的特征”,又让学生能从游戏中轻松的获得知识,而且内容一层层深入,让学生体会到知识的延伸性。另外还让学生感受到数学的奇妙和乐趣。)四、学习小结通过这节课,说一说你有什么收获啊?你印象最深的是什么?你对自己在课堂上的表现满意吗?
教学目标:1、通过观察、探究、交流等活动,让学生经历探索3的倍数的特征的过程,理解3的倍数的特征,会判断一个数是不是3的倍数。2、培养发展学生分析、观察、比较、操作、概括、猜测、验证、归纳的能力。3、学生通过探索与亲身参与实践活动,并能在活动中获得成功情感的体验。学习重点:探索3的倍数的特征,会判断一个数是不是3的倍数。学习难点:理解3的倍数的特征。教学流程:一、设疑引新:师:“我这里有3张卡片,它们是2,3,5,谁能用这3张卡片组成一个是2的倍数的三位数呢?”(学生摆出两种:352,532)师:你为什么这样摆?(学生回答后,课件出示2的倍数特征。)师:怎么摆能让这三位数成为5的倍数呢?(学生摆出235,325。)师:你为什么这样摆?(学生回答后,课件出示5的倍数特征。)师:你能用2,3,5这3张牌摆出一个3的倍数吗?你为什么这样摆?(学生肯定会受2,5的倍数的特征的干扰,猜想个位上是3,6,9的数是3的倍数,摆出253,523这两个数来。)师追问:这两个数是3的倍数吗?请你检验一下。学生通过检验发现这两个数不是3的倍数。看来刚才的猜想是错误的,只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢? 想不想知道?好,这节课我们就一起来研究3的倍数的特征。老师相信你们一定能在动手实践、动脑思考中找出答案。板书课题:3的倍数特征。二、探究新知1、在导学案的百数表中找出3的倍数。师:请在百数表中找出3的倍数,并把它圈起来。汇报交流:出示课件2、操作中发现规律:下面根据表格中标记的3 的倍数,来动手操作,借助计数器来摆一摆,看看能不能有新的发现。请同学们听清要求:每个桌子上都有一个计数器,同桌俩合作,从百数表中找出3的倍数,一个拨数,一个记录。看看每次用了几颗珠子,现在请你在3的倍数中任意选几个来摆一摆,并把它记下来。听清了吗? 好,开始!实验一:(1)实验并填好实验记录表
3的倍数 所用算珠的颗数 所用算珠的颗数是不是3的倍数
学生汇报交流实验结果。(2)观察实验记录表,你发现了什么? 把你的发现在小组里说一说。(3)交流、归纳:只要是3的倍数的数,用的算珠的颗数正好是3的倍数。实验二:猜想一下,不是3的倍数的数,所用算珠的颗数又会怎么样呢?(1)实验验证,并填好实验记录表:
不是3的倍数 所用算珠的颗数 所用算珠的颗数是不是3的倍数
(2)汇报交流实验结果。如果一个数不是3 的倍数,这个数各位上数的和不会是3的倍数。2、猜想验证。(1)启发:根据刚才的操作,你猜想3的倍数有什么特征?引导学生发现,所用算珠的颗数,就是各位上数字之和。猜测:一个数各个数位上数字之和是3的倍数的数,就是3的倍数。 (板书……?)(2)引导验证:要想知道这个猜测对不对,可以怎么办?(验证)。验证规律:
126 162 573 999 235 1236 各个数位数字之和 和是不是3的倍数 用除法算一算有没有余数
汇报验证结果。3、归纳总结。现在谁能归纳一下3的倍数有什么特征呢?师生共同归纳:3的倍数,它的各位上数的和一定是3的倍数。如果一个数不是3 的倍数,这个数各位上数的和不会是3的倍数。小结:一个数是3的倍数,这个数各位上的数字的和一定是3的倍数。(板书……!)(出示课件)一个数各个数位上的数字之和如果是3的倍数,那么,这个数就是3的倍数。否则,这个数就不是3的倍数。 全班齐读3的倍数的特征。四、巩固应用1、快速判断出哪些数是3的倍数?2、判断(正确划√,错误划×)(1)个位上是3、6、9的是一定是3的倍数。( )(2) 3的倍数一定是奇数。 ( )3、在□中填几,这个数就是3的倍数。□7 4□2 56□4、师:“上面的这些数都太小了,看不出本事,大数你能一眼看出来吗? 老师能,信不信?课件出示:396306933631“想不想知道老师这么快的奥秘在哪儿?我们的依据都是3的倍数的特征,但用的方法不同,你们是把各个数位上的的数加在一起,而我用的是“弃3倍数法。”学生掌握了这种方法之后,趁热打铁,“你能不能改一改其中的某个数字使它成为3的倍数。”学生回答完后,我及时提问:“你们为什么不改其中的3、6、9和0呢?”学生通过思考回答:“因为0、6、3、9每一个数都是3的倍数,所以只要改1和7这两个数就行了。”5、再出一个数:1236946572819816 引导“弃和为3的倍数法”五、总结梳理 师:通过这节课的学习,你有什么收获?(3的倍数的特征是各个数位相加的和是3的倍数,用弃3倍数法能更快判断是不是3的倍数)六、拓展延伸:这节课我们一起研究了3的倍数的特征。想一想我们是怎样研究的?(引导学生回想学习过程),通过这样的学习过程,现在我们怎样判断一个数是不是3的倍数?(学生回答)老师给同学们推荐一个作业:用这节课学习的方法研究一下9的倍数有什么特征?七、课堂检测:1、把3的倍数圈起来45 86 121 456 3789 2244 4196 12557831 36929667 2、在□中填几,这个数就是3的倍数。1□2 ( )115□ ( )3、将下面这些数进行分类。548、15、2707、820、118、452、507、210、462、4502的倍数:( ) 3的倍数:( ) 5的倍数:( ) 同时是2、3、5的倍数: ( ) 《3的倍数的特征》导学案泽库中心完小 周宣霞学习目标:1、经历3的倍数的特征的归纳过程,掌握3的倍数的特征。2、能快速、准确地判断一个数是否是3的倍数。学习重点:掌握 3的倍数的特征,能准确地判断一个数是否3的倍数。学习重点:掌握 3的倍数的特征,能准确地判断一个数是否3的倍数。学习难点:通过探究自主发现3的倍数的特征。学习过程一。知识链接
下面的数,哪些是2的倍数?哪些是5的倍数。
364、420、515、736、1028、905、2的倍数( )5的倍数( ) 说说2的倍数特征是什么?5的倍数特征是什么?我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?大胆猜测一下?同桌猜一猜。二。研究学习1.引导学生探究3的倍数的特征。
请在下表中找出3的倍数,并做上记号。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
2.引导观察。
(1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。教师引领:斜着观察 你发现了
(2)思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?
(3)试一试概括出3的倍数特征一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。
3.试试身手
(1)圈出3的倍数:75 63 25 69 54 87 14 56 65 91
(2)圈出3的倍数 573 753 999 1236 2244 7863 123845 45207
(3)自己试着写几个3的倍数:然后小组交流检验。巩固应用:
1.从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件: 先在演算纸上写出所有的两位数
(1)是3的倍数:
(2)同时是2和3的倍数:
(3)同时是3和5的倍数:
(4)同时是2、3和5的倍数:
2.探讨下面各数中,哪些是6的倍数,哪些是9的倍数,根据这些数试着总结6的倍数的特征是什么?9的倍数的特征是什么?
48、54、954、99、945、468、873、999。
(1)6的倍数有:____________ 。
(2)9的倍数有_______________。
(3)试着概括和归纳6、9的倍数特征 a.6的倍数特征是:这个数既是2的倍数,又是3的倍数。
b.9的倍数特征是:各个数位上的数字之和是9的倍数。 达标检测:1.下面的数,哪些是3的倍数? 42、82、111、95、655、2016、2037、5988、 22222.提高练习:(l)在下面口里填上一个数字,使这个数有因数3,各有几种填法?你是怎样想的? □7 4□2 □44 65□□ 12□1(2)你今年10岁,再过几年,你的年龄是3的倍数?为什么?(3)下面的数,哪些是3的倍数? 17 45 67 96 122 345 3.出示:把下表中9的倍数涂上颜色。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
说说这些数是9的倍数,都是3的倍数吗?为什么?反过来,3的倍数也一定是9的倍数吗?为什么?(举例说明)4. 数学小故事。熊爸爸在狐狸办的工厂干了3个月的活,月工资856元,这一天,熊爸爸到狐狸家里领工资。狐狸算得2468元,熊爸爸算得2568元。现在只知道有一个人算对了,你能很快判断出是谁算对了吗?说出理由。