关于《比的意义》教学设计(汇总四篇)

关于《比的意义》教学设计

作为一名教师,编写教学设计是必不可少的,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编整理的关于《比的意义》教学设计,欢迎大家分享。

《比的意义》教学设计1

教学内容:

人教版课标教材六年级上

教学目标:

1、 理解比的意义,知道比是表示两个数之间的一种关系。

2、 会读比、写比、知道比的各个部分名称。

3、 渗透“变与不变”的函数思想。

教学重点:

理解比的意义,知道比是表示两个数之间的一种关系。

教学难点:

沟通比与倍数、分数(百分数)、除法之间的内在联系。

教学过程:

一、初步理解比是一种关系

1、引入比。

(1) 问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和红球按4比1,应该怎么放?

方案1:黄球4个,红球1个。

方案2:黄球8个,红球2个。

讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?

学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。

方案3:红球12个、白球3个;红球16个、白球4个;

讨论:为什么这些方法都是4:1?

(2) 红球和黄球的比呢?

(3) 小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。

2、认识比的各个部分的名称。

中间象冒号的叫做“比号”,前面的数叫做比的“前项”,后面叫做比的“后项”。

二、进一步认识比的意义

1、出示羊毛衫图。

(1) 讨论:从这个2:3中,你可以得到哪些信息?

交流:兔毛是羊毛的2/3;羊毛是兔毛的1.5倍;兔毛是这件衣服的2/5。羊毛是这件衣服的3/5。

(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?

2、出示新生儿图。

(1)讨论:这里的1:4是什么意思?

交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。

(2) 如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?新生儿的头长是1米呢?

说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

(3) 讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。

3、举例。

三、完善比的意义

1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。

(1)你看出了什么?

交流:飞机飞行的速度是1800÷3=600千米/小时。

1800:3,这是路程和时间的比。

(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。

2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。

讨论:你看到比了吗?

交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

四、总结提升

1、 总结

(1) 今天我们研究了什么?说说什么是比?

(2) 比和我们以前学习的很多知识有联系,你能说说吗?

2、 应用。(机动)

(1) 出示:地球储水量中,淡水与海水的比是4:141。

从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。

今年流行16:9的宽频数字电视。

最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。

(2)说说你看懂了什么意思?

《比的意义》教学设计2

教材简析:

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

(2)比的后项不能是0。

教学内容:

苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。

教学对象分析:

学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。

教学目标:

1、理解并掌握比的意义,会正确读写比。

2、记住比各部分的名称,并会正确求比值。

3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。

4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。

5、养成认真观察、积极思考的良好学习习惯。

教学重点:

理解和运用比的意义及比与除法、分数的联系。

教学难点:

理解比的.意义。

教学媒体:

电脑课件、实物投影

教学过程

一、创设情景,激发兴趣

1、 引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。

你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)

32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)

27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)

2、联系奥运,分析题目.

在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。

看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?

那你知道他的速度到底有多快吗?

如果我要你们列式来求该怎么求呢?(110÷12.91)你是根据什么来列式的?(路程÷时间=速度)

看完奥运,我们再来看看我们学校的事情

3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)

4、学校用150元买来3个小足球,每个小足球多少元?

(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?

学生读题回答,教师板书(总价÷数量=单价 150÷3)

3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)

[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]

二、自主探究,合作交流

1、比的意义。

(1) 那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。

那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)

(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。

质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?

引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

(2) 同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)

都说完了,那谁愿意站起来说一说呢?

(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。

那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)

那单价呢?可以怎么说啊?(单价是总价和数量的比)

在我们常用的数量关系中还有工作效率=工作总量÷工作时间

这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)

[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。]

(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)

汇报,板书:两个数相除又叫做两个数的比。(齐读)

你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)

[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]

(4)练习题:填空。

有5个红球和10个白球,白球和红球个数的比是( )比( ),红球和白球个数的比是( )比( )。

[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]

2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!

[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]

(2)汇报。

1:我学会了比的写法,3比4记作3∶4(让学生板演)

思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]

2:我学会了比的各部分名称。(结合3∶4来说明)

如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)

3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

问:那么怎样求比值呢?(前项除以后项的商)

练习题:(课件出示)求出下面各比的比值。3∶4 0.7∶0.35 8∶4 0.2∶1/5

想:比值通常可以是什么数?

[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]

4:两数相除又叫做两个数比,看来比和除法之间有着一定的联

系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。

出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)

相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数

设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

5:我还知道比的后项不能为“0”。

问:为什么呢?(引导学生从不同角度说明)

三、多层练习,巩固新知

《比的意义》教学设计3

教学目标

1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

2、培养学生比较、分析和概括等思维能力。

教学重难点

使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

教学准备

幻灯片

教学过程设计

教学内容

师生活动

备注

一、 引入新课

二、教学新课

三、巩固联系

四、作业

1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

引入新课

2、出示两道文字题

(!)3千米是5千米的几分之几?

(2)8吨是4吨的几倍?

学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

1、学生用十分钟自习书本52到53页

2、问:通过自习你知道了哪些知识?还有哪些疑问?

3、小组内互相说,解决问题。

4、教师请个别同学说,然后师生一起探讨、研究。

5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

6、说明相关注意点。如:单位、比值、名称、写法、读法。

1、书本53页练一练

2、练习十二1、2

练习十二3、4、5

《比的意义》教学设计4

教学目标:

1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

教学重点:

理解比的意义,掌握求比值的方法。

教学难点:

理解比的意义,建立比的概 念

教学过程:

活动一:

同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

活动二;

(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

让学生举出生活中这样的例子。

(二)探究非同类量的比

课件出示书中的第二个红点问题。

让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

再让学生举出生活中这样地例子。

活动三:

仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

课件出示问题:

⑴、比的读、写法?比都有哪些表示形式?

⑵、比的各部分名称?如何求比值?

⑶、比和除法、分数有哪些联系?

⑷、比的后项能不能是0?为什么?

引导学生起来交流,在学生交流的基础上有针对性的板书。

活动四:

1、填一填。

⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。

⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。

活动五;

学生谈收获。

一键复制全文保存为WORD
相关文章