作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。教案要怎么写呢?下面是小编辛苦为大家带来的《二次函数》的复习教学设计(优秀7篇),希望大家可以喜欢并分享出去。
一、说课内容:
九年级数学下册第27章第一节的二次函数的概念及相关习题 (华东师范大学出版社)
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。
3、教学重点:对二次函数概念的理解。
4、教学难点:抽象出实际问题中的二次函数关系。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的。?
(y=kx+b,ky=kx ,ky= , k0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k0的条件,以备与二次函数中的a进行比较。
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。
例1、(1)圆的半径是r(cm)时,面积s (cm2)与半径之间的关系是什么?
解:s=0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x2+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)2
=100(x2+2x+1)
= 100x2+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)2+1 (2) s=3-2t2
(3)y=(x+3)2- x2 (4) s=10r2
(5) y=22+2x (6)y=x4+2x2+1(可指出y是关于x2的二次函数)
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
五、评价分析
本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。
教学目标:
(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;
(2)培养学生的归纳、总结能力;
(3)通过两圆外公切线长的求法向学生渗透“转化”思想。
教学重点:
理解两圆相切长等有关概念,两圆外公切线的求法。
教学难点:
两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。
教学活动设计
(一)实际问题(引入)
很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)
两圆的公切线概念
1、概念:
教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:
和两圆都相切的直线,叫做两圆的公切线。
(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。
(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。
(3)公切线的长:公切线上两个切点的距离叫做公切线的长。
2、理解概念:
(1)公切线的长与切线的长有何区别与联系?
(2)公切线的长与公切线又有何区别与联系?
(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。
(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。
(三)两圆的位置与公切线条数的关系
组织学生观察、概念、概括,培养学生的学习能力。添写教材P143练习第2题表。
(四)应用、反思、总结
例1 、已知:⊙O 1 、⊙O 2的半径分别为2cm和7cm,圆心距O 1 O 2 =13cm,AB是⊙O 1 、⊙O 2的外公切线,切点分别是A、B。求:公切线的长AB。
分析:首先想到切线性质,故连结O 1 A、O 2 B,得直角梯形AO 1 O 2 B。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)
解:连结O 1 A、O 2 B,作O 1 A⊥AB,O 2 B⊥AB。
过O 1作O 1 C⊥O 2 B,垂足为C,则四边形O 1 ABC为矩形,
于是有
O 1 C⊥C O 2,O 1 C= AB,O 1 A=CB。
在Rt△O 2 CO 1和。
O 1 O 2 =13,O 2 C= O 2 B- O 1 A=5
AB= O 1 C= (cm)。
反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。
例2* 、如图,已知⊙O 1 、⊙O 2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长。
分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解。证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP。因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解。
解:过点P作两圆的公切线CD
∵ AB是⊙O 1和⊙O 2的切线,A、B为切点
∴∠CPA=∠BAP ∠CPB=∠ABP
又∵∠BAP+∠CPA+∠CPB+∠ABP=180°
∴ 2∠CPA+2∠CPB=180°
∴∠CPA+∠CPB=90°即∠APB=90°
在Rt△APB中,AB 2 =AP 2 +BP 2
说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。
(五)巩固练习
1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )
(A)直角三角形(B)等腰三角形(C)等边三角形(D)以上答案都不对。
此题考察外公切线与外公切线长之间的差别,答案(D)
2、外公切线是指
(A)和两圆都祖切的直线(B)两切点间的距离
(C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线
直接运用外公切线的定义判断。答案:(D)
3、教材P141练习(略)
(六)小结(组织学生进行)
知识:两圆的公切线、外公切线、内公切线及公切线的长概念;
能力:归纳、概括能力和求外公切线长的能力;
思想:“转化”思想。
(七)作业:P151习题10,11。
教学内容:
人教版九年义务教育初中第三册第108页
教学目标:
1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的。图象,数与形相互联系。
教学过程设计:
一。创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2. ①
2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二。归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:
1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;;的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
一、教材分析
1、命题解读
二次函数的图象及性质近8年考查7次,以解答题为主,且综合性较强,一般涉及求交点坐标及顶点坐标。在选择、填空题中考查的知识点有二次函数图象与系数a、b、c的关系、与一元二次方程的关系、增减性、对称轴、顶点坐标及与x轴、y轴的交点。
2、教学目标
(1)认识二次函数是常见的简单函数之一,也是刻画现实世界变量之间关系的重要数学模型。理解二次函数的概念,掌握其函数关系式以及自变量的取值范围。
(2)能正确地描述二次函数的图象,能根据图象或函数关系式说出二次函数图象的特征及函数的性质,并能运用这些性质解决问题。
(3)、了解二次函数与一元二次方程的关系,能利用二次函数的图象求一元二次方程的近似解。
3、教学重点:
(1)二次函数的图象与性质
(2)二次函数的平移
4、教学难点:
能根据图象或函数关系式说出二次函数图象的特征及函数的性质,并能运用这些性质解决问题。
二、教学方法:
基于本节课的特点和我们学校正在进行的“三、三、六”教学模式,我采用“先学后教,当堂训练”的教学方法。即:教师激情导课,学生自学自做,教师进行面批,组织小组交流,展示学习成果,检测导结反馈。对于课堂上学生出现的疑问,尽量让学生互相解决,教师起到帮助、组织、合作、协调的作用。最后让学生当堂完成实践练题和检测导结,经过严格有梯度的训练,使学生学会知识、形成能力。同时鼓励和培养学生提高分析能力、表达能力和探究能力。以“学—导—练”三步为主线,以“六环节”为结构,来进行本节课的教学。在整个教学过程中加强学生自学方法的`指导。以问题“引”自学,以自测“显”问题,以优生“带”差生,以点拨“疏”疑点,以训练“巩”新知。
三、学法指导
由于是复习课,因此我在以学生为主体的原则下,让他们通过画图、观察、比较、推理、小组交流,直至最后探索出结论。以引导、探究、合作、点拔、评价的方式贯穿整个课堂。
四、教学过程:
本节课设计了七个教学环节:
1、挑战自我;
2、考点清单;
3、夯实基础;
4、小结感悟;
5、目标检测
6、拓展延伸
7、作业布置。
1、挑战自我
出示3道有关二次函数的图象与性质,二次函数图象的平移的中考试题,让学生自主完成,引起有关知识点的回忆。第一题是二次函数对称轴的考查;第二题考察图象的平移;第三题解有关抛物线与系数a、b、c关系的题。
教学效果:学生积极投入思考,开篇就为学生创设了一个自由、宽松的讨论氛围。
2、考点清单
师生共同回忆二次函数的图象与性质2、二次函数图象与系数a、b、c
的关系二次函数图象的平移
教学效果:预计学生对这些知识有遗忘,应积极引导回忆问题,达到对知识点有明确的认识。
3、夯实基础
师生共同探讨四道典型例题,强化知识点的灵活应用。题让学生先想后答,遇到难题小组交流,教师点拨,全班展示,充分发挥学生对积极主动性。
教学效果:大部分学生学习二次函数有困难,应互帮互助,共同进步。
4、小结感悟:说说你在本节课解题过程中的收获及疑惑?(小组交流)
教师给学生一定的时间去反思回顾,本节课对知识的研究探索过程,小结方法及相关结论,提炼数学思想,掌握数学规律,从而达到巩固所学知识目的增强学习兴趣和合作意识。
5、目标检测:
为学生提供自我检测的机会,教师针对学生反馈情况,及时调整授课,查漏补缺。并要求学生在规定五分钟内完成,同时对每道题进行分数量化。当大部分学生完成后,教师出示答案,以便学生核对。同组的学生进行作业互相批改。并把结果告诉老师,以便老师掌握每位学生是否都当堂达到学习目标。对于当堂不能完成任务的学生课下进行适当的辅导。
6、拓展延伸:给学有余力的学生提供更多的练习机会。
7、课后作业:《中考指导》62页——64页。
以上就是我的说课内容,欢迎各位领导、同仁批评指导!
五、教学设计反思:
1、给学生展示自我的空间。本节课的设计本着以教师为主导、学生为主体,以知识为载体、培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供给学生自主合作探究的舞台。在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。课堂上把激发学生学习热情和获得学习的能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
2、在课堂上要给予学生充分的时间去思考、动手实践,而不是使合作流于形式。要把合作交流的空间真正的还给学生。教师在课堂中还要照顾到每一名学生,让全体的学生都动起来。
一。学习目标
1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
二。知识导学
(一)情景导学
1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。
2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?
设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .
3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?
在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。
(二)归纳提高。
上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?
一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。
一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?
(三)典例分析
例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值。
(1) y=1― (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2
(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c
例2.当k为何值时,函数 为二次函数?
例3.写出下列各函数关系,并判断它们是什么类型的函数.
⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;
⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;
⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;
⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.
三。巩固拓展
1.已知函数 是二次函数,求m的值。
2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的`值.
3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。
4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式
5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.
6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m.
⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;
⑵求当上部半圆半径为2 m时的截面面积.(π取3.14,结果精确到0.1 m2)
课堂练习:
1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。
(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .
2.写出多项式的对角线的条数d与边数n之间的函数关系式。
3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。
4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的函数关系式。
课外作业:
A级:
1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的
是 (填序号).
2.函数y=(a-b)x2+ax+b是二次函数的条件为 .
3.下列函数关系中,满足二次函数关系的是( )
A.圆的周长与圆的半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;
C.圆柱的高一定时,圆柱的体积与底面半径的关系;
D.距离一定时,汽车行驶的速度与时间之间的关系。
4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式。
B级:
5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式。
6.某地区原有20个养殖场,平均每个养殖场养奶牛20xx头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。
C级:
7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).
(1)写出y与x之间的函数关系式;
(2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?
(3)当圆的面积为5πcm2时,其半径增加了多少?
8.已知y+2x2=kx(x-3)(k≠2).
(1)证明y是x的二次函数;
(2)当k=-2时,写出y与x的函数关系式。
教材分析
本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。
本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。
按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:
1、知识与技能
通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2、过程与方法
通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。
3、情感态度价值观
(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。
实验研究:
作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:
(一)、利用二次函数解决实际问题的易错点:
①题意不清,信息处理不当。
②选用哪种函数模型解题,判断不清。
③忽视取值范围的确定,忽视图象的正确画法。
④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。
(二)、解决问题的突破点:
①反复读题,理解清楚题意,对模糊的信息要反复比较。
②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。
③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。
④注意检验,养成良好的解题习惯。
因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。
教学目标
1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。
2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。
3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。
教学重点与难点
教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。
教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。
学生学情分析
我所代班级的学生是高一新生, 他们在初中已学过二次函数的简单性质与图像,知道二次函数在 二次函数最值教学设计时在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。
教法分析
根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的`问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。
教学过程
(一)复习旧知
回忆二次函数的图像与性质:
1. 图像:
2. 定义域:
3. 单调性:
4. 最值:
【设计意图】复习旧知,引入新课。
(二)自主探究
探究1:定轴定区间最值问题
分别在下列范围内求函数f(x)=x2-2x-3的最值:
二次函数最值教学设计 二次函数最值教学设计
二次函数最值教学设计
规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。
【设计意图】
通过探究
1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。
(三)合作探究(含参二次函数最值求解问题 )
探究2:动轴定区间最值问题
求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。
【设计意图】
通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。
变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。
【设计意图】
通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。
规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,
注意做到“不重不漏”。
探究3:定轴动区间最值问题
求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。
变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值。
【设计意图】
通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。
规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。
(四)知识小结
本节课研究了二次函数的三类最值问题:
(1) 定轴定区间最值问题; (2) 动轴定区间最值问题; (3) 定轴动区间最值问题。
核心思想是判断对称轴与区间的相对位置, 应用数形结合、分类讨论思想求出最值。
【设计意图】
归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。
(五)结束语
数缺形时少直观,形少数时难入微。数形结合百般好,割裂分家万事休!
(六)课后作业
1.二次函数最值教学设计1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。
2. 求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。
3. 求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。
【设计意图】
学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。
一、教学目的
1.使学生理解自变量的取值范围和函数值的意义。
2.使学生理解求自变量的取值范围的两个依据。
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。
4.通过求函数中自变量的取值范围使学生进一步理解函数概念。
二、教学重点、难点
重点:函数自变量取值的求法。
难点:函灵敏处变量取值的确定。
三、教学过程
复习提问
1.函数的定义是什么?函数概念包含哪三个方面的内容?
2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的条件是什么?
(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)
4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。
新课
1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。
2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:
(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。
(2)自变量取值范围要使实际问题有意义。
3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。
推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。
4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:
(1)例3中的4个小题归纳起来仍是三类题型。
(2)求函数值的问题实际是求代数式值的问题。
补充例题
求下列函数当x=3时的函数值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4) 。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小结
1.解析法的意义:用数学式子表示函数的方法叫解析法。
2.求函数自变量取值范围的两个方法(依据):
(1)要使函数的解析式有意义。
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。
练习:P94中1,2,3。
作业:P95~P96中A组3,4,5,6,7。B组1,2。
四、教学注意问题
1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。
2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。
3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。