作为一位优秀的人民教师,有必要进行细致的说课稿准备工作,说课稿有助于学生理解并掌握系统的知识。那么说课稿应该怎么写才合适呢?下面是小编辛苦为大家带来的小学六年级数学《圆面积》二教学设计【优秀8篇】,希望可以启发、帮助到大家。
教学内容
人教版义务教育数学第十一册67——68页“圆面积公式的推导及面积公式的运用”。
教学目标
1、使学生理解圆的面积的意义。经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式。
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、转化、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
教学重点
圆面积公式推导的过程。
教学难点
理解圆等分的份数越多拼成的图形越接近长方形。并且发现拼成的长方形的长相当于圆周长的一半。
教具、学具准备
圆面积的课件,自学案,探究案,彩色圆形纸片(每人1个)。
课前3分钟:由孩子主持,用《曹冲称象》的故事渗透“转化”思想。
教学过程
一、情境导入。
师:同学们,你们想知道老师准备了什么吗?
1、出示场景————《马儿的困惑》
师:马儿可以吃到多大范围内的草呢?闭上眼睛想一想,它吃草的范围是一个什么图形?(是一个圆形。)
师:那么,要想知道马儿吃草的范围的大小,就是求圆形的什么呢?
2、板书课题并理解。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
师:看到这个课题后,你们会想到什么?(意义、公式、计算)
师:对!刚才这几位同学跟老师想的一样,老师整理了一下。
3、出示学习目标并理解。
(1)理解圆面积的意义。
(2)圆的面积公式是怎样推导出来的?
(3)掌握圆面积的计算方法。
师:同学们都明白这节课的目标了吧,那我们就带着这几个目标走进今天的课堂。
二、充分感知,理解圆的面积的意义。
师:什么叫圆的面积呢?请大家拿出圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?(抽生答)
课件显示:圆所占平面的大小叫做圆的面积。
猜猜看圆面积的大小和什么有关系呢?(周长、直径、半径)
师:到底与什么有关系呢?下面我们就来认真研究研究。
三、自主探究,合作交流。
1、引导转化。
师:我们学过了哪些平面图形的面积?
平行四边形的面积公式是用什么方法推导出来的?梯形呢?三角形呢?(学生回答,教师演示课件)
预设:用平行四边形剪拼成长方形,用两个完全一样的梯形拼成平行四边形,用两个完全一样的三角形拼成平行四边形。
师:平行四边形、三角形、梯形面积公式的推导有什么共同点?
预设:用剪拼的方法转化成学过的图形。
师:用剪拼的方法转化成学过的图形,这是我们在学习数学的过程中常用的一种很好的方法————转化法。(板书:转化)
那么能不能把圆也转化成学过的平面图形来推导面积计算公式?
2、剪一剪、拼一拼、想一想。
自学案:自学教材67页内容,用红笔勾画出知识重点,并把教材119页上的圆剪一剪、拼一拼、想一想。
(1)我们把圆剪成了多少等份?每一小份是个什么图形?
(2)拼成了近似于以前学过的什么图形?拼成的图形跟原来的圆比较什么变了,什么没变?
(3)如果圆等分的份数越来越多,拼成的图形会接近什么图形?
师:课前孩子们进行了自学,都完成了吗?愿意把你的学习成果跟大家一起分享吗?请大家先在组内交流,然后以组为单位在全班分享。
自学分享:组内分享自学成果,抽二组(16等分、32等分)上台结合作品交流。
预设:为什么要分成偶数等分?
教师活动:学生自主活动时注意观察学情,交流展示时适时点拨评价,注意问题生成,目标的达成。
师:老师昨天在家也进行了自学,也想跟同学们分享分享,同意吗?但老师想请个解说员帮帮我,谁来试试。(教师边点课件学生边解说)
强调:如果圆等分的份数越多,每一份就会越小,长边就越接近直线,这个图形就越接近于长方形。
3、合作探究,推导公式。
师:拼成的近似的长方形与原来的圆到底存在着什么关系呢?(课件)请同学们结合图仔细观察、分析研究。
课件出示探究问题和提示。
探究问题:(1)拼成的近似的长方形的面积=原来()。
长方形的长近似于(),用字母()表示,
宽近似于(),用字母()表示。
(2)因为长方形的面积=()×(),
所以圆的面积=()×(),
用字母表示:()×()
S=()。
温馨提示:
1、结合所拼图形,观察、分析并独立完成探究问题,有困难的可以与对子同学合作完成。
2、组内同学完成后,组长快速组织交流,并安排好如何展示汇报。
展示交流:抽二组互动交流,学生在交流(1)时把字母表示标在图上,交流(2)时板书在黑板上。
预设:推导圆的面积公式还有其它方法吗?
学生活动:明确探究问题和提示,独立完成,合作探究,二组展示交流。
教师活动:学生活动时注意观察学情,交流展示时适时点拨评价,注意问题生成,目标的达成。
四、运用知识,拓展思维。
师:刚才大家用转化的方法,把圆剪拼成近似的长方形,研究发现了圆的面积公式,孩子们真了不起,老师替你们高兴。根据公式,要求圆的面积,只需要知道什么条件?(生回答)课前“马儿的困惑”现在能解决吗?(出示课件)
1、巩固练习:
(1)马儿被主人用一根3米长的绳子拴在了这根木桩上,它可以吃到多大范围内的草呢?(学生独立解答,抽生黑板板书交流,教师点拨评价。)
(2)计算下面图形的面积。(学生独立完成,抽生展台交流,教师点评。)
2、拓展提高。
(1)圆形桌面的周长是62.8分米,给这个圆桌铺上一块玻璃,每平方分米的玻璃价格为0。3元。这块圆形玻璃需要多少元?(学生独立完成,抽生展台交流,教师点评。)
(2)用一张长8厘米、宽为6厘米的长方形的纸剪出一个最大的圆。这个圆的面积是多少平方厘米?
五、课堂小结。这节课你有什么收获?学生互动式发言。
板书设计:
评析:(指导教师:冉显志)
本节课由田英老师执教,在xxxx年秋优质课比赛中获得优秀奖。
一、 教学目标
1.知识与技能:掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。
2.过程与方法:在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。
3.情感态度与价值观:进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。
二、教学重点
圆环的特征、圆环面积公式的推导及运用。
三、教学难点
灵活运用圆环面积的计算方法解决相关的简单实际问题。
四、教学具准备
课件、学具。
五、教学过程
(一)学习方法回顾、铺垫回忆一下
我们在推导圆面积计算公式时用到了什么学习方法?
(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)
这节课我们继续用这种方法研究新问题。
(二)创设实际应用的问题情境
1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?
(1)动画光盘
(2)歌曲光盘
(3)空白封面光盘
2.想知道这张光盘的内容吗?我们一起来看看。
欣赏学生的校园活动照片。
这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?
3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,我们先了解一下哪部分是可以进行封面设计的。
4.小组内摸一摸准备的光盘实物,再让学生实投指一指。
师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】
5.这个图形有什么特点?
生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)
6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。
板书课题:圆环
外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。
圆面积公式的推导分析论文
教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。
〔第一种教法〕
(1)复习长方形面积计算公式。
(2)让学生自学课本中推导圆面积计算公式的过程。
(3)教师边用教具演示,边要求学生回答:
①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?
②拼成的图形与原来圆的面积相等吗?
③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?
(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。
(5)揭示圆的面积公式。
〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕
〔第二种教法〕
1、导入新课。
教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着,出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。
2、实际操作。
要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:
①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?
②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)
③所拼出的图形面积与原来圆面积相等吗?
3.推导公式。
先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长度?从而
由长方形的面积=长×宽
↓↓
得圆的面积=πr×r=πr[2]。
然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到了证实,使学生确信无疑。
〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的。办法,把新旧知识有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会”,而且使他们“会学”,且有助于发展学生的智能。〕
〔第三种教法〕
1、引入新课。
教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算,但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出它的面积呢?(揭示、板书课题)。
2、创设情境。
教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后再分别与原来的图纸片叠在一起,见下图:
(附图{图})
折四等份剪成折八等份剪成折十六等份剪成
正四边形正八边形正十六边形
引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等份。
3、推导公式。
师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?
生[,1]:选正十六边形为好,因为它较接近圆。
生[,2]:选边数越多的正多边形更好,因为它更接近圆。
师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:
(1)圆的面积相当于多少个三角形面积之和?
(2)这些三角形的底边之和相当于圆的什么?
(3)每个三角形的高相当于圆的什么?
学生边回答,教师边板书:
正十六边形的面积=S[,三角形]×16
↓
=底边×高÷2×16
=底边×16×高÷2
↓↓
圆的面积=2πr×r÷2
=πr[2]
最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形,看是否仍能推出S[,圆]=πr[2]。
〔评:这种教法具有以下几个特点:
1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。
2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。
3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本中的方法及其他方法作验证,使学生加深理解,记忆牢固。
4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。
总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”,又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由此可见,后两种教法是可取的,且教法三更佳。
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。
教学重点:
探索圆面积的计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长12.56
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
教材分析:
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学情分析:
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点:
通过观察操作,推导出圆面积公式及其应用。
教学难点:
极限思想的渗透与圆面积公式的推导过程。
教学过程:
活动一:创设情景,提出问题
1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?
活动二:猜想比较:
出示图
师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?
活动三:自主探究,验证猜想
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:
A、剪--怎样剪?剪成几份?
B、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程
(3)教师板演圆面积的推导过程
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)
活动四:实践运用,体验生活
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结
通过本节课的学习你有哪些收获?
教学内容:
西师版六年级数学上册20页例2、例3。
教学目标:
1、知识与能力:使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、过程与方法:激发学生参与整个课堂教学活动的兴趣,让学生在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。
3、情感、价值观:渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:
圆面积计算公式的推导。
教学难点:
极限思想的渗透及圆面积公式的推导。
教具学具:
剪刀4把,圆纸片,大小不一的两个圆。
教学过程:
一、认识圆面积的内涵——提出问题
你认识圆吗?你已经知道了圆的那些知识?回顾以前学的平面图形,你还想知道圆的什么知识?
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?你能说出圆的面积指的是什么吗?
学生说后,老师小结指出:圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。揭示课题:圆的面积
二、讨论操作——分析问题
1、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。
如学生想不出方法,就生回忆长方形、平行四边形、三角形的面积公式推导过程。如有学生想出就让学生举手谈设想。
①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。
②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。
③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
师指出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
2、分组操作,反思求悟
把学生分组,根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
3、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪,拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
师出示大小不一的两个圆,哪个面积大?为什么?也就是说圆的面积与什么有关?引导得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。
4、学生尝试,研究转化过程
学生在小组内进行,师巡视指导,若学生有困难,师可引导:首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成平行四边形(三角形、梯形等)。
三、以转化成平行四边形为例,研究推导出圆面积公式——解决问题
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了平行四边形,现在大家能够找到圆面积的计算方法吗?
2、学生小组或同桌合作探究,推导公式。
(1)、讨论探究,出示提示语:
平行四边形的长相当于圆的(),宽相当于圆的()?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)、指名学生上台演示公式推导过程
3、揭示公式,验证猜想。让学生齐读公式。
4、用字母表示公式。
提问:要求圆的面积只要知道什么就行?(半径)
四、在实践中巩固——应用问题
1、教学例3:修建一个半径是30米的圆形鱼池,它的占地面积是多少平方米?
学生自做,指名学生板演,老师巡视,了解学生完成作业情况,后集体订正。
2、完成教材21页“课堂活动”第1题。
学生自做,后同桌交流,交流时介绍一下思路及结果。
五、课堂总结,渗透学法——研究性学习
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考,把圆转化成已经学的平行四边形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
六、巩固、拓展知识。
1、从自己身边找一个圆形物体,请你想办法求出它的面积。
2、把圆分成若干等份后,拼成近似的梯形或三角形,推算出圆面积计算公式。
七、板书略。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其
用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
等等
刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?
课堂教学设计说明
1.使 m.jingyou.net 学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。