《三角形边的关系》教学设计优秀5篇

作为一位杰出的教职工,往往需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?这次帅气的小编为您整理了《三角形边的关系》教学设计优秀5篇,希望可以启发、帮助到大家。

角形边的关系教案 篇1

教学内容

四边形分类P29~30页。

教学目标

1.知识目标:通过观察、比较、分类等活动,了解梯形的特征,进一步认识平行四边形。

2.技能目标:知道长方形、正方形是特殊的平行四边形。

3.情感目标:使学生在学习中学会观察,分析。

重点难点

重点:了解梯形的特征,进一步认识平行四边形;知道长方形、正方形是特殊的平行四边形。

难点:了解梯形的特征,进一步认识平行四边形;知道长方形、正方形是特殊的平行四边形。

教具准备

各种四边形的图片。

教学过程

一、创设情境。

师:看,淘气剪了许多四边形,你能将这些四边形进行分类吗?

学生对图形进行分类后进行汇报。

二、探究新知。

1.认识平行四边形和梯形。

教师展示学生的分类方法,如和课本不一致,引导学生观察智慧老人的分法。

教师总结:

A.两组对边分别平行的四边形叫做平行四边形。

B.只有一组对边平行的四边形叫做梯形。

师:请学生说一说平行四边形和梯形的特征。

如学生说不出平行四边形对边相等,教师可以准备几根小棒。

师提问:你能选几根拼出一个平行四边形吗?你认为应该选择什么样的四条边?

学生进行选择,拼摆。

讨论得出结论:平行四边形每组对边想等。

2.长方形、正方形是特殊的平行四边形。

教师:长方形、正方形是平行四边形吗?

教师引导学生根据特征得出:长方形、正方形是特殊的平行四边形。

3.体会长方形、正方形、平行四边形、梯形、四边形之间的关系。

教师边引导边板书:如果用一个圈把平行四边形都放在里面的话,请你也画一个圈来表示长方形、正方形。如果平行四边形的外面再画一个圈,你觉得这应该是什么?再用一个圈画出梯形的地盘,应该怎么画?试试看。

三、巩固练习。

1.在第30页的点阵图上画出平行四边形、梯形和三角形。

学生独立完成,注意指导学生在画图是,借助点子,将图形画得美观。

2.第30页练一练1题分类。(剪下课本附页中的图形。)

学生独立完成,集体订正。

四、课堂总结。

你对这几种图形又有哪些新的认识?(学生发言)

五、课堂拓展。

如果把一个梯形,一条边不断地变小,一直小到一个点,就是什么形状?一直大到和下底相等,就是什么形状?

六、作业设计。

1.教材30页3题。

2.教材30页4题。

角形边的关系教案 篇2

一、教学内容与学情分析;

本课的教学内容是人教版四年级下册第五单元第一课时《三角形的认识》。

学生通过第一学段和四年级上册的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,认识了线段,学习了垂直,能从直线外一点画出这条直线的垂线。在此基础上,本课时安排了三角形各部分名称,定义,高和底等教学内容。为学习三角形的面积算法和各种图形打下基础。

二、教学目标

(一)知识与技能

在操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。

(二)过程和方法

在操作活动、概括中,积累认识图形的经验和方法。

(三)情感态度和价值观

培养学生学习数学的兴趣。

三、教学重难点

教学重点:理解三角形的概念,认识三角形各部分的名称,知道三角形的底和高

教学难点:会画三角形的高

四、教学准备

课件、实物投影

五、过程设计

一、欣赏图片,导入新课

师:同学们,老师今天带来了很多美丽的建筑图片,我们一起来欣赏一下。

师:谁能说说这些图片中都有哪种平面图形?

揭题:是的,每张图片中都含有三角形。三角形的奥秘非常多,那么它在我们的生活中究竟有什么作用呢?今天这节课我们就一起走进三角形,揭开三角形神秘的面纱。(板书课题:三角形的`认识)

[设计意图:通过建筑图片,增强学生对数学源于生活的认识,激发学生学习的兴趣]

二、自主探究,学习新知

1、三角形的定义

(1)请同学们翻开书本第60页,自学有关三角形的内容。

(2)师:自学完了,如果现在让你画一个三角形,你会画么?

指名学生到黑板上画三角形,并介绍一下画的三角形有什么特点。

在学生说的时候板书:3个角,3条边,3个顶点

并提问:对他的发言你还有什么需要补充的吗?

(4)师:这些是同学们刚才通过自学知道的知识,那你觉得到底什么样的图形才能叫做三角形呢?

指名不同的学生说。

刚才有同学说到:三条线段围成的图形叫三角形。(课件出示)

师:这句话里哪个词是关键?

师:三条线段围成是怎么样的?(出示:每相邻两条线段的端点相连。)

对这句话你们都理解了吗?那老师就要来考考你们了。

教师举出反例让学生判断。

师:现在你认为到底怎样的图形才叫三角形呢?

[设计意图:帮助学生较好地理解“线段”、“围成”的含义,培养学生的抽象概括能力和语言表达能力]

(5)师:你们每人都画了一个三角形,黑板上现在也有一个三角形,这么多的三角形,我们该怎么去区分它们呢?你们能给它们取个名字吗?(给它们标上字母)

师:老师给黑板上的三角形中的每个顶点分别标上ABC,那么这个三角形就记作三角形ABC。

在三角形ABC中,我们把这个点叫做顶点A,那么其他两个就是?这条边叫AB边,那么这两条是?请你想一想,这三个顶点,分别对应哪条边。

2、三角形的高

(1)师:看黑板上的三角形,如果小红家刚好就在点A,BC是一条小河,小红要去提水,你认为走那条路比较近?

师:是走AB这条路吗?还是走AC这条路呢?其实啊,这两条路都比较远,你能想到最近的路在哪里吗?

师:对了,就是从这个顶点出发,作对边的垂直线段。这条路才是最近的。

师:谁能上来把它画出来?指名,要求学生边画边说画垂线段的过程。

先把三角尺的一条直角边和BC这条边重合,使三角尺的另一条直角边经过点A,再沿着这条直角边画一条垂直的线段。(当学生说的不完整的时候请其他学生补充)

师:让我们重温一下刚才画垂线段的过程(课件演示)

师:像这样,从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫三角形的高,这条对边叫做三角形的底。

师:黑板上这条垂直线段就叫做三角形的高,与高垂直的BC边就叫做它的底。通常,三角形的高要画成虚线,还要标上直角符号。(板书:高、底)

[设计意图:通过创设具体情境,然后学生借助已有的知识和经验解决具体的问题,形成知识迁移]

(2)师:你会画高吗?请同学们在刚才自己画的三角形中画高。

(3)师出示判断题,哪些是三角形的高?刚才老师看到有同学的高是这样画的,他们画的对吗?为什么?

师:第四个图形画的是高吗?想想看,它是怎么画出来的。这时候谁是底?

师:为什么刚才把BC叫底,现在却把AB叫底呢?

师:刚才提到的过一个顶点可以向对边引出一条高,想一下,在这个三角形中你还能画出其他的高吗?

师:想想看,过点B如何画AC边的高?方法也一样,把三角尺的直角边和AC边重合,经过点B就能画出这条高,这时AC边就是三角形的底。(课件演示)看来在一个三角形中能画几条高?(从3个不同的顶点出发能画出3条不同的高)

师:你还能在自己的三角形中画出其他两条高呢?

[设计意图:让学生初步感受三角形的底和高的相互依存关系]

三、应用拓展,提高技能

(1)师(课件出示):想象一下,这些三角形的高在哪里?

师:课件出示前面三个图形的高,这些高有什么变化?这是什么原因呢?(为什么高逐渐向右移动)

生:顶点向右移动。

师:如果顶点继续向右移动,那么最后一个三角形的高应该画在什么地方呢?

生:与另一条边重合了。

师:这是为什么呢?(因为是直角三角形)这里AC是高,哪条是底呢?

师:刚才我们知道了三角形都有三条高,你还能找出这个三角形的其他两条高吗?(学生找出)

师:原来直角三角形的两条直角边就是对应的两组底和高。

(2)师:现在老师把这四个图形放在一起,想一想,如果顶点继续向右移动,会出现怎样的三角形,高会出现在什么地方呢?(课件出示一个钝角三角形)

学生先想象,再指出高的位置。

师:如果顶点向左边移动呢?(课件出示)高又会出现在什么地方?

学生想象后,再指出。

师:请同学们仔细观察大屏幕,这些三角形有什么共同之处?(板书:同底等高)

师:想一下,为什么这些高的长度都相等呢?(顶点在平行线上移动)

师:如果顶点不在平行线上移动,他们的高还会一样吗?

学生回答,师演示。看来高的位置跟什么有关?是呀,同学们高是从顶点画出来的。

(3)师(隐去三角形,留下顶点和高、底的虚线):如果以顶点到垂足之间的线段为三角形的一条高,你能想象出这个三角形吗?它的底在哪里?

师:隐去底,现在你还能想象出三角形的底在哪里吗?请你画在练习纸上。

学生画,展示学生作品。

像这样只给指定高的三角形,你能画多少个三角形?那如果高确定了,底也确定了,现在你能画出几个三角形呢?

[设计意图:让学生再次感受三角形的底和高的相互依存关系]

四、再现知识,总结反思

师:这节课你有什么收获,对于三角形的知识,你还有那些问题和疑惑?

这节课我们明确了三角形的特征:三个角、三条边和三个顶点,知道了高是从顶点出发画出来的,研究了顶点的特性,下节课我们还要继续探究三角形的其他奥秘。

六、作业设计

书本第65页练习十五第一题

七、板书设计

三角形的认识

3个角,3条边,3个顶点

三条线段围成的图形叫三角形

高底

八、教学反思

如何正确地理解并画出三角形的高是本节课的教学难点。为什么学生画高的时候会经常出现错误呢?分析思考后我发现很多学生都不能正确地找到顶点及相应的对边,学生的操作是在模仿中进行的,所以我让学生帮小红找最短的路径,让学生借助已有的知识和经验解决具体的问题,在具体情境中逐步理解三角形“高”和“底“的定义。然后逐步深入,让学生感悟三角形的底和高的相互依存关系,最后隐去三角形,和底让学生想象三角形的底在哪里,再次感受三角形的底和高的相互依存关系。

知识点

1、任意一个三角形内角和等于180度。

2、三角形任意两边之和大于第三边。

3、能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。

4、四边形的内角和是360°

5、用2个相同的三角形可以拼成一个平行四边形。

6、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

7、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

练习题

1、等腰三角形的一个内角是94°,那么它的另外两个内角是()和()。

2、三角形的两个内角之和是85°,第三个角是()°,这个三角形是()三角形。

3、一个直角三角形的一个锐角是45°,另一个内角是(),按边分这是()三角形。

4、三角形最多()个直角,最多()个钝角,最少()个锐角。

5、已知等腰三角形的一个内角是80°,另外两个内角分别是()、()或()、()。

参考答案

1、等腰三角形的一个内角是94°,那么它的另外两个内角是(43)和(43)。

2、三角形的两个内角之和是85°,第三个角是(10)°,这个三角形是(等腰)三角形。

3、一个直角三角形的一个锐角是45°,另一个内角是(45°),按边分这是(等腰)三角形。

4、三角形最多(1)个直角,最多(1)个钝角,最少(2)个锐角。

5、已知等腰三角形的一个内角是80°,另外两个内角分别是(50°)、(50°)或(80°)、(20°)。

初中三角形三边关系教学设计 篇3

【教学目标】

教学重点:“三角形任意两边之和大于第三边”的关系的探究和归纳。 教学难点:判断怎样的三条线段能构成三角形?

教学关键:让学生合作交流,通过实验和观察PPT课件,从中体验三角形的三边关

系及构成三角形的条件,并从中探索出解决这种问题的实质。

教学准备:教材、PPT演示文稿、小棒

教 法:情境导入法、设疑诱导法、操作发现法、观察、归纳,分析归纳教学法; 学 法:实验操作法、合作探究法、观察法、分析法、归纳法,对比法。 教学课时:一课时

教学过程:

一、导入新课,板书课题

上课后,放幻灯片1引入新课。

二、 展示学习目标

放幻灯片2-3

放幻灯片4 导学案反馈。

老师:讲出现的问题及强调得到的结论。放幻灯片5、6知识应用。

三、 合作交流 (8分钟)

放幻灯片7 合作交流的要求。 老师巡视观察学生完成学案的情况。

四、 高效展示 (8分钟)

放幻灯片8 高效展示要求。

五、 点评(约15分钟)

展示完成后 ,放幻灯片9点评要求。2分钟以后按照分工开始点评。 点评【活动一】完成后放幻灯片10,老师点拨。学生继续点评。

学生点评完【跟踪练习1】后,放幻灯片11 变形练习 。完成后学生继续点评。

《三角形三边的关系》教案教学设计 篇4

教学内容

人教版义务教育课程实验教科书数学四年级下册P82页。

教学目标

1、让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

2、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

3、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

教具、学具准备

多媒体课件,不同长度不同颜色的小棒若干根,实验表格 。

教学过程

一、创设情境,导入新课

师:出示课件)同学们看,图上这些地方你们都熟悉吗?

(我们的学校、鼓楼商场还有学校后门的建设银行。)

师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?

师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?

(学生困惑,沉默不语。)

师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

(板书课题:三角形的三边关系)

二、设疑激趣,动手探究

师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)

师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。

师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

(学生上台演示,其他同学看。)

师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

(单位:厘米)

能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

《三角形三边的关系》教案教学设计 篇5

教学目标:

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

教学重点、难点:探索并发现三角形任意两边之和大于第三边。

教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。

教学过程:

一、复习旧知,导入新课

这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(演示猜想1)

1、学法指导

师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。

操作要求:

(1)、2人一组合作完成四种拼法

(2)、围三角形时要注意首尾相连。

(3)、完成后,填写好活动记录表准备交流

第一根小棒长

第二根小棒长

第三根小棒长

能否围成三角形

2、 动手操作,寻找规律(师巡视,并指导)

3、 交流汇报,探究规律。

师:哪个小组愿意来汇报。

小组上台展示,

3厘米、8厘米、10厘米 能

3厘米、5厘米、10厘米 不能

3厘米、5厘米、8厘米 不能

5厘米、8厘米、10厘米 能

师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?

先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)

师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3+5=8 重合了 不能

师:是这样吗?(演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10

看起来是这样的。

3、师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了

师:看来只是其中的两条边之和大于第3条边是不完整的,

生1:加“任何”、“任意”

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)

师:是这样吗?再挑选一组能围成三角形的三条边,来验证:

生:3+4>5、3+5>4、4+5>3,

师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、课堂小结

老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?

师:今天你有什么收获?

其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。

一键复制全文保存为WORD
相关文章