一元一次方程解法教学设计(精选9篇)

好的课堂应该是让学生课前有一种期待,课中有一种满足,课后有一种留恋。这次帅气的小编为您整理了一元一次方程解法教学设计(精选9篇),您的肯定与分享是对小编最大的鼓励。

解一元一次方程教案设计 篇1

第一课时

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8 (2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x= 3x-2 x-=-l

5x2-3x+1=0 2x+y=l-3y =5

例2.解方程(1)-2(x-1)=4

解一元一次方程的教案 篇2

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

教学过程

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么?

(2)什么叫移项?移项要注意什么?

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?

观察你解方程的过程,原方程做了哪些变形?

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8,②

(2)下列方程求解正确的是()

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只?

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?

解一元一次方程教案设计 篇3

学习目标

1、 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2、 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2、

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

这项工作分两 段完成,两段完成的工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 X=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答。

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

解一元一次方程教案设计 篇4

一。教学目标:

1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2。能力目标:培养学生的运算能力与解题思路。

3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二。教学的重点与难点:

1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三。教学方法

1。教 法:讲课结合法

2。学 法:看中学,讲中学,做中学

3。教学活动:讲授

四。课 型:新授课

五。课 时:第一课时

六。教学用具:彩色粉笔,小黑板,多媒体

七。教学过程

1。创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的`结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2。探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数。)

(抽同学起来回答,然后再由老师概括。)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可。)

3。例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2。解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)。在我们前面学过的知识中,什么知识是关于有括号的。

2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)。一起回顾合并同类项的法则:未知数的系数相加。

6)。系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1。

4。巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5小结:和同学们一起回顾我们这节课学习了什么?

解一元一次方程

概念

含括号的一元一次方程的解法的解法

作业:1。P12 。1

2。预习下一节课的内容,

3。复习此节课的内容,并完成一下两道思考题。

思考:(1) 解方程: 。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2) 该怎么求解?

解一元一次方程的教案 篇5

教学目标:

1.知识目标

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2.能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

教学重点:

1.弄清列方程解应用题的思想方法;

2.用去括号解一元一次方程。

教学难点:

1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

教学过程:

一、 创设情境,提出问题

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

(教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

二、 探索新知

1. 情境解决

问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

问题2:教师引导学生寻找相等关系,列出方程。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-2000)=150000

去括号

6x+6x-12000=150000

移项

6x+6x=150000+12000

合并同类项

12x=162000

系数化为1

x=13500

问题4:本题还有其他列方程的'方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。

2. 解一元一次方程去括号

例题:解方程3x-7(x-1)=3-2(x+3)

解:去括号,得3x-7x+7=3-2x-6

移项,得 3x-7x+2x=3-6-7

合并同类项,得 -2x=-10

系数化为1,得x=5

三、 课堂练习

1.课本97页练习

2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

四、总结反思

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

( 由学生自主归纳,最后老师总结)

四、 作业布置

1. 课本102页习题3.3第1、4题

2. 配套资料相关练习

教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

解一元一次方程 篇6

【教学任务分析】教学目标知识技能

1、用一元一次方程解决“数字型”问题;

2、能熟练的通过合并,移项解一元一次方程;

3、进一步学习、体会用一元一次方程解决实际问题。

过程

方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。

情感

态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。

重点建立一元一次方程解决实际问题的模型。

难点探索并发现实际问题中的等量关系,并列出方程。

《解方程》教学设计 篇7

教学内容:教材P69例4、例5及练习十五第6、8、9、13题。

教学目标:

知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±b=c与a(x ±b)=c类型的方程。

过程与方法:进一步掌握解方程的书写格式和写法。

情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点:理解在解方程过程中,把一个式子看作一个整体。

教学难点:理解解方程的方法。

教学方法:观察、分析、抽象、概括和交流。

教学准备:多媒体。

教学过程

一、复习导入

1.出示习题:解下面方程:4x =8.6 48.34-x =4.5

学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。

2.引出:这节课我们来继续学习解方程。(板书课题:解方程)

二、互动新授

1.出示教材第69页例4情境图。

引导学生观察,并说一说图意。再让学生根据图列一个方程。

学生列出方程3x +4=40后,让学生说一说怎么想的。

(一盒铅笔盒有x 支铅笔,3盒铅笔盒就有3x 支铅笔。)

在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。

2.让学生试着求出方程的解。

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。

学生可能会疑惑:方程的左边是个二级运算不知识如何解。

也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。

师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )

让学生尝试继续解答,订正。

根据学生的回答,板书解题过程:

3x +4=40

解: 3x =40-4

3x =36 (先把3x 看成一个整体)

3x ÷3=36÷3

x =12

让学生同桌之间再说一说解方程的过程。

3.出示教材第69页例5:解方程2(x -16)=8。

先让学生说一说方程左边的运算顺序:先算x -16,再乘2,积是8。

思考:你能把它转换成你会解的方程吗?

让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:

(1)利用例4的方法来解。

让学生说一说自己的思考,重点说一说把什么看作一个整体?

(先把x -16看作一个整体。)板书计算过程:

2(x -16)=8

解:2(x -16)÷2=8÷2(把x -16看作一个整体)

x -16=4

x -16+16=4+16

x =20

(2)用运算定律来解。

引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。

根据学生回答,板书计算过程:

2(x -16)=8

解: 2x -32=8 (运用了乘法分配律)

2x -32+32=8+32 (把2x 看作一个整体)

2x =40

2x ÷2=40÷2

x =20

4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。

(可以把方程的解代入方程中计算,看看方程左右两边是否相等。)

三、巩固拓展

1.完成教材第69页“做一做”第1题。

先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)

2.完成教材第69页“做一做”第2题。

先让学生自主解方程,再集体订正。

3.完成教材第71页“练习十五”第8题。

先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。

四、课堂小结

这节课你学会了什么知识?有哪些收获?

引导总结:1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

作业:教材第71~72页练习十五第6、9、13题。

板书设计:

解方程

例4:3x +4=40

解: 3x =40-4 (先把3x 看成一个整体)

3x =36

3x ÷3=36÷3

x =12

例5:2(x -16)=8 (把x -16看作一个整体)

方法1: 方法2:

解:2(x -16)÷2=8÷2 解:2x -32=8 (运用了乘法分配律)

x -16=4 x -32+32=8+32 (把2x 看作一个整体)

x -16+16=4+16 2x =40

x =20 2x ÷2=40÷2

X =20

解一元一次方程的教案 篇8

一、教学目标

知识与技能

1、会根据实际问题中的数量关系列方程解决问题。

2、熟练掌握一元一次方程的解法。

过程与方法

培养学生的数学建模能力,以及分析问题解、决问题的能力。

情感态度与价值观

1、通过问题的解决,培养学生解决问题的能力。

2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。

二、重点难点

重点

根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。

难点弄清题意,用列方程解决实际问题。

三、学情分析

学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。

四、教学过程设计

教学

环节问题设计师生活动备注情境创设

讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。

创设问题情境,引起学生学习的兴趣。

学生动手解方程

自主探究

问题一:

一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

问题二:

某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?

问题三:

整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。

解一元一次方程的教案 篇9

教学目标:

知识与技能:

1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用

新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,

认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:

设计理念:

数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念

师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25

师:同学们想学会这个魔术吗?生:想!

师:通过这节课的学习,同学们一定能学会!

【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】

二、突出主题,突出主体

1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,

(2)长方形的的长为a,宽比长少5,周长为36,则=36

(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180

师:这些式子小学学习过,它们是()?生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】

2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到验证的方法吗?

师:在阅读P/80例题1时老师做出友情提示:

(1)选择一个未知数x

(2)对于这三个问题,分别考虑:

用含x的未知数分别表示正方形的边长;

用含x的未知数表示这台计算机的检修时间;

用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程

学生讨论出上述答案后

师:大屏幕显示上述问题的答案

【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】

三、体现新时代教师是学生学习的合作者

在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)(1)方程两边表示的是同一个数;

(2)左右两边表示的方法不同。

【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

四、给学生一个展示自己精彩的舞台

师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

设任意框出的四个数字的第一个为x,则:

生1:x+(x+1)+(x+7)+(x+8)=24;

生2:x+(x+1)+(x+7)+(x+8)=84

师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

一键复制全文保存为WORD
相关文章