作为一名默默奉献的教育工作者,通常需要准备好一份教学设计,借助教学设计可以让教学工作更加有效地进行。那要怎么写好教学设计呢?为大家精心整理了《用字母表示数》的教学设计优秀7篇,希望大家可以喜欢并分享出去。
教学内容:
人教版小学数学五年级上册第四单元第一节
教学目标:
1、使学生初步认识字母表示数的意义和作用。学会在字母式里乘号的简略写法。
2、通过教学活动,让学生经过探究、合作、交流来感受用字母表示数的优越性。
3、通过学习,让学生体会数学来源于生活,又服务于生活的数学思想,并结合
教学内容对学生进行励志教育。
教学重点:会用字母表示数
教学难点:理解用字母表示数的意义
教学准备:课件
教学过程:
一、创设情境,引入新课
出示王老师的一个简要介绍,发现文中的字母,请学生解释字母所表示的含义,问:用字母表示有什么好处?想想在生活中你还知道什么是用字母表示的?字母在数学中也常常出现,今天就来研究用字母表示数。(板书课题)
二、组织探究,构建新知
1,探究用字母表示数
猜数游戏:分别说出各字母表示的几?依据是什么?这里的m可以是几?可以是小数或分数吗?由此得出:一个字母可以表示某个数,也可以表示一些数。
2,探究用字母表示数量关系
让孩子猜我在黑板上写的一个字母b可以表示我和学生谁的年龄,答案不同,这时增加一个条件“如果我比他大30岁(板书b+30)猜哪个是我的年龄;再换一个角度:如果用n表示老师的年龄,那么他的年龄怎样表示?从字母式中可以看出什么数量关系?字母在表示年龄时可以是200吗?启发学生字母有时有取值范围。
3,探究含字母式的简略写法
通过对正方形周长和面积的计算公式的文字叙述式和字母式的对比,启发学生了解
用字母表示简明,易记,便于应用。这里的字母式还有更简便的写法,(出示课件)这里有个易混点,重点区分。
三、巩固知识,加深应用
基本练习:巩固字母式的简略写法
加深练习:出示青蛙的儿歌,学生讨论如何只用一个字母将整个儿歌贯穿起来?
四、自我评价,总结全课
学生谈谈这节课的收获,或自评他评。出示阅读材料,了解代数之父。最后老师总
结“这才是代数的起步,在学习的道路上,;老师送给大家一个字母式a=x+y+z,意为成功=艰苦劳动+正确方法+少说空话。结合教学内容对学生进行励志教育。
教学目标:
1、通过在探究活动让学生初步理解用字母表示数的方法。
2、初步会用含有字母的式子表示简单的数量、数量关系和计算公式,并能根据字母所取的值口头求简单的含有字母的式子的值。
3、学生在完整地经历把实际问题用含有字母的式子表达的抽象过程中,进一步体会用字母表示数的简洁与便利,发展学生的符号感,进一步引发学生的数学思考。
4、联系生活实际,让学生在运用简单符号进行表达和交流的过程中,感受数学表达方式的严谨性、概括性及简洁性,从而增强学生进一步产生对数学的好奇心求知欲,进而形成稳定的数学学习兴趣。
教学准备:
教学课件
教学过程:
一、导入
1、我们先来看一首儿歌,自己读一读。
(1)你能接着说下去吗?(指名说2个,并出示课件)
(2)还能接着说下去吗?能说完吗?
(3)不过,老师就有个办法只用一句话就能数出所有的青蛙来?你们想知道吗?
2、不要急,在今天这节课后,你也能办到的。有信心学好吗?
二、新授
其实在我们的生活中像这样数不完的例子还有很多呢!我们一起来看看。
1、例1(课件出示1个用小棒摆成的三角形)
(1)摆1个这样的三角形需要几根小棒?
(2)摆2个这样的三角形呢?可以怎样列式?
(3)你能接着往下说吗?
(4)摆1000个呢?摆10000个呢?
(5)如果用字母a表示三角形的个数,那摆a个三角形需要几根小棒?
(6)为什么用a×3?
(7)这里的a表示什么?a×3呢?
(8)也就是说不管摆几个三角形,小棒根数总是三角形个数的3倍。
(9)a个三角形,那究竟是几个三角形呢?这里的a可以表示哪些数?可以是小数吗?(我觉得这里应该让孩子们自己讨论下会比较好)
怎么样,用一句含有字母的话就把咱们数不完的事情给弄清楚了。看来字母可真神奇呀,字母的魅力还不止这些呢,我们接着看!
2、例2(出示例题的全部三个问题条件)
(1)自己看题目,比较这三个问题有什么共同点?(这里还是加上“写出数量关系”比较好)
(2)所以该怎样列式?
(3)合唱组的人数是(24+X),这里的24表示什么?X呢?那24+X就表示?
(4)根据写出的加法算式,书法组一共有多少人呢?舞蹈组呢?合唱组呢?
(5)如果X=10,合唱组有多少人?X=14呢?
(6)请同学们思考下,这里的字母X除了可以表示10或14,还可以表示其他的数吗?
一个字母能表示这么多的数,简直太神奇了吧!接着体会它的奇妙之处!
3、习题3
(1)从这幅图中你得到哪些信息?
(2)为什么用两个不同的字母表示?
(3)独立填在自己的书上。
做对了吗?太了不起了,给自己一个鼓励的掌声吧!但高兴的同时可别忘了我们的知识哟!
4、例3
(1)自己读题。大家还记得正方形的周长和面积公式吗?(板书)
(2)如果用字母a表示边长,C表示周长,S表示面积。你能用字母写出正方形的周长和面积公式吗?自己尝试着写,组织交流。
(3)文字公式和字母公式你比较喜欢哪个?为什么?
(4)其实这样的写法还不算简单,还有更简单的写法呢!想知道吗?
翻看书106,看看还有怎样简便的写法。
交流,并完整字母公式、
(5)师生共同小结书上的3点简写方法,并板书。
三、巩固
小朋友们听明白了吗?光说不练假把式,我们就一起练练吧!
四、小结
(1)这节课我们学习了什么知识?
(2)现在你有办法说完整这首儿歌吗?
教学目标
1知识与技能:
[1]让学生理解并学会用字母表示数。
[2]能用含有字母的式子表示简单的数量关系或计算公式。
[3]学会求简单的含有字母式子的值。
[4]会用字母去解决问题
2过程与方法:
[1]让学生经历把实际问题用含有字母的式子进行表达的抽象过程,体会字母表示数的简洁和便利,发展符号感。
3情感态度与价值观:
[1]让学生体会到数学与实际问题的密切联系
[2]让学生感受表达方式的严谨性、概括性以及简洁性。
教学重难点
1教学重点
[1]理解字母表示数的意义,会用含有字母的式子表示数量。
2教学难点
[1]能用含义字母的式子表示数,体会字母的优越性
[2]会用字母去解决问题
教学工具
多媒体设备
教学过程
教学过程设计
1、情境引入
活动一
我们校园里的好人好事真不少,看学校通知栏上有一则招领启事,(投影出示)
失物招领
今有501班同学在学校操场上拾到一个粉红色钱包,里有n元钱,
请失主速到学生处认领
2015年10月12日
1、同学们猜一猜:钱包里有多少钱?能不能直接把多少钱写出来?
2、失物招领中的钱用什么表示的?
3、让学生讨论n可以表示哪些具体的数。
今天这节课我们就一起来研究用字母表示数。
(板书课题:用字母表示数)
2、探究新知
1、认识用字母或含有字母的式子来表示数。
(1)指名提问:你叫什么名字?今年几岁了?
板书学生名字及年龄。( __ 11岁)(具体情况而定)
戴老师比__大20岁,你知道戴老师今年多少岁了吗?怎样计算?想一想,当__ 15岁时,戴老师的年龄该怎样计算?
想一想,当__以下岁数时,戴老师的年龄该怎样计算?发表,填表:
(2)突出对比,体会字母表示数的优越性
师:那么写了这么多,你能用一个式子简明地表示出任何一年老师的年龄吗?
学生自主尝试,必要时提醒:如__的年龄用字母a来表示(板书a),
那么老师的年龄应该怎么表示?
讨论思考,汇报总结
板书:(a+20),
你觉得这样表示好不好,说说你的理由。
(3)体会字母表示数的具体含义
在这里a表示什么?a+20又表示什么?为什么可以用a+20来表示戴老师的年龄呢?通过提问:a可以是几呀?(任何一个自然数)a可以等于200吗?为什么?
讨论出字母的取值问题,引导学生知道生活中数学的实际意义。
(4)学会代入计算式子的值
当a=12时,你会计算老师的年龄吗?
说一说你是怎么计算的?
(5)练习:
当a=13时,老师的年龄是多少?
a+20=( )+20=( )
3、深入研究
1、用字母表示乘法式子
(1)屏幕演示,摆出一个三角形。
(2)提出问题:摆1个三角形需要多少根小棒?(3根)那摆2个这样的三角形需要多少根小棒?摆10个呢?请算一算。摆a个呢?
2×3=6(根)
10×3=30(根)
(3)归纳演示:
如果三角形的个数用a来表示,那么小棒的根数双要怎么表示呢?
为什么可以这么表示? (课件演示:a×3 )
(4)注意书写格式的规范:①数与字母相乘时,乘号可以写为“点”或者省略不写;
②数与字母相乘时,数字一般写在字母前面。
课件演示:a×3 = 3 a
(5)再次深入体会字母表示数的具体含义
这里的a又可以表示哪些数?这里的a可以是200吗?
为什么前面表示年龄时,a+20的a不能为200,而这里的3 a中的a又可以是200了呢?
引导学生知道字母在不同的情境中表示的含义是不同的
2、字母表示运算定律
(1)师:到现在为止,你学过哪些运算定律?
生:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律
师:那你能把加法交换律用字母表示吗?
生回答师板书:a+b=b+a
师:这样表示有什么好处?
生:简明、易懂、易记,也便于应用
(2)你能把其它的运算定律写一写吗?
完成书本第54页上的表格。
课件演示结果。
书写提示:字母中间的乘号可以省略,其它运算符号不能省略。
(3)实践:小小审判官。(判断下列各式的写法是否正确)
a×0、8写作a0、8 ( ) (数与字母相乘时,数字一般写在字母前面。)
5×6写作56 ( ) (数与数相乘时,乘号不能省略不写。)
a+2写作2a ( ) (数与数相加时,加号不能省略不写。)
a×b写作ab ( ) (字母与字母相乘时,乘号也可以省略不写。)
3、字母表示公式
(1)师:这是什么图形啊?你知道它的周长和面积怎么算吗?
生:正方形面积=边长X边长正方形周长=边长X 4
师:如果正形的边长用a表示,你还能用字母表示出它的面积和周长吗?
学生讨论,交流
教师提示:面积可以用S表示,周长可以用C表示
学生汇报结果:S = a X a C=4a
总结:S = a X a我们还可以写成S = a2
读作:a的平方表示2个a相乘
学生齐读
(2)练习:
1、
a = 3 cm
S = a 2 =( ) X ( )=( )CM2
你知道CM2是什么意思吗?
C =4a=( ) X ( )= ( )CM
2、你能用字母写出长方形的周长和面积公式吗?
S=( )
C=( )
4、字母解决实际问题
(1)课件出示例4
一大杯果汁总共有1200克,倒了3小杯,如果每小杯的重量是X克,你能用含有字母的式子表示大杯中还剩多少克的果汁吗?
学生讨论思考
交流汇报总结
课件出示:三小杯重量是多少?3X那剩下的呢? 1200-3X
追问:这里的X又可以是哪些值呢?500可以吗?
(2)课件出示例5
摆一个三角形要用3根小棒,摆一个正方形要用4根小棒,那么摆X个三角形和X个正方形共要用几根小棒呢?
学生讨论,思考
课件出示:摆三角形用了几根?(3X)摆正方形又用了几根呢?(4X)
那一共用了几根啊? (3X+4X)
你能把3X+4X写得再简单一点吗?
学生思考,交流讨论
课件出示:3X+4X=(3+4)X=7X
追问:为什么可以这么写?你用到了什么运算定律?
(3)巩固练习
用含有字母的式子表示下面的数量关系
1、30减去A的差
2、A的5倍与B的3倍的和
3、40加上C的7倍的和
4、T的9倍减去T的5倍的差
课后小结
师:今天你都学到了哪些知识?
把你今天学到的知识用自己的话说一说。
板书
用字母表示数
__ a岁戴老师a+20岁
a个三角形ax3根小棒
任何一个数a n
字母可以表示数量关系a+20
公式S=ab C=4a
运算定律a+b=b+a
字母还解决问题
教材分析
本节教材信息窗呈现的是黄河三角洲的美丽画面和文字说明。主要呈现的信息是黄河三角洲面积和平均每年新增陆地面积。拟引导学生通过研究黄河三角洲逐年造地面积的变化情况,引入“用字母表示数”和“求含有字母式子的值”的学习。
教学重点:
在具体的情境中理解用字母表示数的意义,初步掌握用字母表示数的方法。
教学难点:
学会用含有字母的式子表示数量。
教学之前用百度在网上搜索《黄河三角洲》的相关图片材料作参考。通过研究教材了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用相关的图片资料,课堂放给学生观看,加深印象。 、2、在具体的情境中理解用字母表示数的含义,初步掌握用字母表示数的方法。 、
讲授法、自学观察法、分组讨论法
教学时,可以让学生课前先搜集一些有关黄河三角洲的资料或图片,在课堂上上交流,。然后通过课件,资料或图片介绍黄河三角洲的形成原因。再让学生观察教材中的情境图,引导学生读懂图中提供的数学信息,提出有价值的数学问题,学习新知识。
教学过程
【新课导入】
1、师:哪位同学能说说我们的生活中哪些地方用到字母?(指名回答)
生1:英语课本,学校名字的下面有英文字母。
生2:我家的车牌号里有字母。
生3:电脑键盘上。
2、师:是的,字母在我们的生活中应用很广泛,同样,数学中也经常用到用字母来表示数量
关系,这节课我们就来研究怎样用字母表示数。(板书课题《用字母表示数》)
3、同学们去过黄河三角洲吗?现在老师就带你们去领略一下那里的迤逦风光。
【展开新课】
(一)通过观察,你看到了什么?从图上你了解到了哪些信息?
生1:我知道了黄河三角洲目前的面积已达5450平方千米。
生2:我知道了黄河三角洲的成因。
生3:我知道了黄河三角洲每年新增陆地面积25平方千米。
生4:我看到了一望无际的黄河三角洲。
(二)根据上面的信息,你能提出什么数学问题?
生1:两年造地约多少平方千米?
生2:三年造地多少平方千米?四年呢?五年呢?
生3:多少年,黄河三角洲的面积达到了5450平方千米?
(三)怎样解决两年造地多少平方千米?
根据学生回答,板书
造地时间(年)造地面积(平方千米)
22×25=50
33×25=75
44×25=100
(四)观察上面的算式,你有什么发现吗?
生1:造地面积和造地时间有关系。
生2:我发现求几年的造地面积,就用25乘几。
生3:我发现在求造地面积时,只有一个因数在变化,那就是造地时间。
(五)小组讨论:
能否用一个简明的算式来表示造地面积和造地时间的关系?
(小组内选代表发表本组的想法)
组1:用25乘年数,也就是25×年数
组2:用△表示年数,造地面积就是:25×△
组3:用□表示年数,造地面积就是:25×□
组4:因为“t”表示时间,造地面积就是:25×t
师:同学们的想法很好,发言很精彩,说明同学们都在认真讨论了。但是有个事需要说明一下:在含有字母的乘法算式中,“×”可以用“·”来代替,如“25×t”可以写成:
“25·t”,或直接写成“25t”、
(六)灵活运用,拓展延伸
1、省略乘号,写出各式。
①α×χ②χ×χ③5×α④χ×3
⑤α×b⑥α×8⑦b×b⑧α×1
2、课本第4页第2,3,4题。
先让学生独立完成,然后组内交流填
3、书第5页第5题。
这是结合实物图巩固用字母表示数的练习。第二组题关系比较复杂,练习时,要引导学生说清图中的意思,再用含有字母的式子表示出红绳的长度。
4、书第5页第6题。
这是一道联系实际巩固用字母表示数的练习。练习时,要让学生明白,大坝的高度包括两部分,一部分是水面到坝顶的高度,另一部分是水面以下大坝的高度。
(七)课堂小结,自我评价
小结:这节课我们学习了用字母表示数。如果让你为自己今天在课堂上的表现打分,你想给自己打多少分?
(八)创意作业
你能用你的岁数表示出家庭里每一位成员现在的岁数吗?如果爸爸是a岁,你还能表示出家庭中其他成员的岁数吗?你还能提出什么问题?
这节课让学生初步体会到数字可以用字母来代替,学会了写一些用字母替代数的式子,通过设疑出示图片,出示问题,小组合作探究等方法,来完成本节课的教学任务,基本达成了教学目标,教育教学效果良好。
存在的问题:
1、有的学生对“把乘号省略和简化”还不太适应。
2、有的学生还习惯把字母写在数字前面。
补救方略:有些知识还需要继续加以强调;对出现问题的同学还需要个别辅导,加强练习。
教学目标
1知识与技能:
[1]让学生理解并学会用字母表示数。
[2]能用含有字母的式子表示简单的数量关系或计算公式。
[3]学会求简单的含有字母式子的值。
[4]会用字母去解决问题
2过程与方法:
[1]让学生经历把实际问题用含有字母的式子进行表达的抽象过程,体会字母表示数的简洁和便利,发展符号感。
3情感态度与价值观:
[1]让学生体会到数学与实际问题的密切联系
[2]让学生感受表达方式的严谨性、概括性以及简洁性。
教学重难点
1教学重点
[1]理解字母表示数的意义,会用含有字母的式子表示数量。
2教学难点
[1]能用含义字母的式子表示数,体会字母的优越性
[2]会用字母去解决问题
教学工具
多媒体设备
教学过程
教学过程设计
1、情境引入
活动一
我们校园里的好人好事真不少,看学校通知栏上有一则招领启事,(投影出示)
失物招领
今有501班同学在学校操场上拾到一个粉红色钱包,里有n元钱,
请失主速到学生处认领
2015年10月12日
1、同学们猜一猜:钱包里有多少钱?能不能直接把多少钱写出来?
2、失物招领中的钱用什么表示的?
3、让学生讨论n可以表示哪些具体的数。
今天这节课我们就一起来研究用字母表示数。
(板书课题:用字母表示数)
2、探究新知
1、认识用字母或含有字母的式子来表示数。
(1)指名提问:你叫什么名字?今年几岁了?
板书学生名字及年龄。( xxx 11岁)(具体情况而定)
戴老师比xxx大20岁,你知道戴老师今年多少岁了吗?怎样计算?想一想,当xxx 15岁时,戴老师的年龄该怎样计算?
想一想,当xxx以下岁数时,戴老师的年龄该怎样计算?发表,填表:
(2)突出对比,体会字母表示数的优越性
师:那么写了这么多,你能用一个式子简明地表示出任何一年老师的年龄吗?
学生自主尝试,必要时提醒:如xxx的年龄用字母a来表示(板书a),
那么老师的年龄应该怎么表示?
讨论思考,汇报总结
板书:(a+20),
你觉得这样表示好不好,说说你的理由。
(3)体会字母表示数的具体含义
在这里a表示什么?a+20又表示什么?为什么可以用a+20来表示戴老师的年龄呢?通过提问:a可以是几呀?(任何一个自然数)a可以等于200吗?为什么?
讨论出字母的取值问题,引导学生知道生活中数学的实际意义。
(4)学会代入计算式子的值
当a=12时,你会计算老师的年龄吗?
说一说你是怎么计算的?
(5)练习:
当a=13时,老师的年龄是多少?
a+20=( )+20=( )
3、深入研究
1、用字母表示乘法式子
(1)屏幕演示,摆出一个三角形。
(2)提出问题:摆1个三角形需要多少根小棒?(3根)那摆2个这样的三角形需要多少根小棒?摆10个呢?请算一算。摆a个呢?
2×3=6(根)
10×3=30(根)
(3)归纳演示:
如果三角形的个数用a来表示,那么小棒的根数双要怎么表示呢?
为什么可以这么表示? (课件演示:a×3 )
(4)注意书写格式的规范:①数与字母相乘时,乘号可以写为“点”或者省略不写;
②数与字母相乘时,数字一般写在字母前面。
课件演示:a×3 = 3 a
(5)再次深入体会字母表示数的具体含义
这里的a又可以表示哪些数?这里的a可以是200吗?
为什么前面表示年龄时,a+20的a不能为200,而这里的3 a中的a又可以是200了呢?
引导学生知道字母在不同的情境中表示的含义是不同的
2、字母表示运算定律
(1)师:到现在为止,你学过哪些运算定律?
生:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律
师:那你能把加法交换律用字母表示吗?
生回答师板书:a+b=b+a
师:这样表示有什么好处?
生:简明、易懂、易记,也便于应用
(2)你能把其它的运算定律写一写吗?
完成书本第54页上的表格。
课件演示结果。
书写提示:字母中间的乘号可以省略,其它运算符号不能省略。
(3)实践:小小审判官。(判断下列各式的写法是否正确)
a×0、8写作a0、8 ( ) (数与字母相乘时,数字一般写在字母前面。)
5×6写作56 ( ) (数与数相乘时,乘号不能省略不写。)
a+2写作2a ( ) (数与数相加时,加号不能省略不写。)
a×b写作ab ( ) (字母与字母相乘时,乘号也可以省略不写。)
3、字母表示公式
(1)师:这是什么图形啊?你知道它的周长和面积怎么算吗?
生:正方形面积=边长X边长正方形周长=边长X 4
师:如果正形的边长用a表示,你还能用字母表示出它的面积和周长吗?
学生讨论,交流
教师提示:面积可以用S表示,周长可以用C表示
学生汇报结果:S = a X a C=4a
总结:S = a X a我们还可以写成S = a2
读作:a的平方表示2个a相乘
学生齐读
(2)练习:
1、
a = 3 cm
S = a 2 =( ) X ( )=( )CM2
你知道CM2是什么意思吗?
C =4a=( ) X ( )= ( )CM
2、你能用字母写出长方形的周长和面积公式吗?
S=( )
C=( )
4、字母解决实际问题
(1)课件出示例4
一大杯果汁总共有1200克,倒了3小杯,如果每小杯的重量是X克,你能用含有字母的式子表示大杯中还剩多少克的果汁吗?
学生讨论思考
交流汇报总结
课件出示:三小杯重量是多少?3X那剩下的呢? 1200-3X
追问:这里的X又可以是哪些值呢?500可以吗?
(2)课件出示例5
摆一个三角形要用3根小棒,摆一个正方形要用4根小棒,那么摆X个三角形和X个正方形共要用几根小棒呢?
学生讨论,思考
课件出示:摆三角形用了几根?(3X)摆正方形又用了几根呢?(4X)
那一共用了几根啊? (3X+4X)
你能把3X+4X写得再简单一点吗?
学生思考,交流讨论
课件出示:3X+4X=(3+4)X=7X
追问:为什么可以这么写?你用到了什么运算定律?
(3)巩固练习
用含有字母的式子表示下面的数量关系
1、30减去A的差
2、A的5倍与B的3倍的和
3、40加上C的7倍的和
4、T的9倍减去T的5倍的差
课后小结
师:今天你都学到了哪些知识?
把你今天学到的知识用自己的话说一说。
板书
用字母表示数
xxx a岁戴老师a+20岁
a个三角形ax3根小棒
任何一个数a n
字母可以表示数量关系a+20
公式S=ab C=4a
运算定律a+b=b+a
字母还解决问题
课题:
用字母表示数
课型:
新授课
课时安排:
1课时
教学目标:
1.知识与技能:
(1)懂得可以用符号或字母表示数。
(2)理解用字母表示运算定律和计算公式的意义。
(3)学会用简便写法表示含有字母的乘法的运算式。
2.过程与方法:应用观察和比较的方法,掌握用字母表示运算定律和计算公式。
3.情感态度与价值观:通过观察和比较,会用字母表示运算定律和计算公式,培养抽象思维能力,渗透求未知数的思想。在教学中渗透环保教育。
教学重点:
能正确运用字母表示运算定律,进行乘号的简写,略写。
教学难点:
理解一个数的平方的含义,乘号的简写和略写。
教学准备:
教学课件。
教学流程:
一、生活引入、揭示课题:
1、教师:今天,老师带来了一首歌曲,会唱的同学可以一起唱。(电脑播放:英文字母歌)
2、畅谈字母在生活中的用处。
3、新课引入:不仅生活中我们要用到字母,在数学学习中,我们还经常用字母表示数。这节课我们就来学习用字母表示运算定律和公式。(板书课题)
二、合作交流、探究新知:
用符号、字母表示特定的数。
1、出示例1:下面每行图中的数,都是按规律排列的。
教师:这里有几组数。都是按一定的规律排列的。看看谁最快地发现他们有什么规律?并说一说它们等于多少?
2、学生在课本上独立完成,并交流发现的规律和算法。
3、教师:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?
用字母表示运算定律:
1、教师:请同学看下面的等式,你知道这些等式分别应用了哪些运算定律?谁能用文字叙述一下它们的含义吗?你能用字母表示这些运算定律吗?
18+34=34+18(357+55)+45=357+(55+45)
53×63=63×53 47×25×4=47×(25×4)
(38+92)×20=38×20+92×20
1000-436-564=1000—(436=564)
1200÷25÷4=1200÷(25×4)
2、引导学生回顾学过用字母表示的运算定律。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
连减的性质:a-b-c=a-(b+c)
连除的性质:a÷b÷c=a÷(b×c)
3、引导学生观察比较:用字母表示运算定律比用文字叙述有什么优点?
引导学生得出:用字母表示比用文字叙述简明易记,便于应用。
4、认识乘号的简写书写习惯。
(1)教师示范讲解乘法交换律:在含有字母的式子里,字母中间的乘号可以记作:“”,也可以省略不写。
板书:ab=ba或ab=ba
(2)要求学生将其它的乘法运算定律简写一下。请动作快的同学上台板演,集体检查核对。
用字母表示计算公式
1、引入和出示例3(1)。
2、学生独立完成,然后小组交流。
3、反馈学生的尝试完成和交流结果,板示完成。
S=aaC=a4
还可以写成S=a2可以写成C=4a
4、强调:a2表示两个a相乘,读作a的平方;省略数字和字母之间的乘号后,数字一定要写在字母的前面。
5、比较:“a2”与2a的意义有什么不同?
6、引入和出示例3(2):
让学生自学并完成,师强调书写格式:计算时等号要对齐。
三、拓展应用、培养能力:
1、完成课本46页做一做。
要求:第2题先写出字母公式,再应用公式代入数据计算。
2、省略乘号写出下面各式。
a×x=x×x=b×8=
a的5倍6个х两个b相乘。
3、判断题。
(1)6÷a=6a;6×a=6a。
(2)25×4和C×4的乘号都可以省略不写。
(3)a×8简写作a8
(4)72=7×2( )
4、口算。
32= 52= 62= 82=
72=22=102=0.52=
5、说出下面各组中的两个式子的意义,并说出哪组中的两个式子结果相同。
62和6×2xx和x2
教学内容:
教科书第47~48页,练习十第4~8题。
教学目标:
1、在理解数量关系的基础上,会用含有字母的式子表示数量。
2、在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母式子的值。
3、培养学生的抽象思维能力、归纳概括能力。
教学重点:
用一个含有字母的式子表示数量。
教学难点:
理解用含有字母的式子表示的数量的意义,体会用含有字母的式子表示数量的简洁性。
教学过程:
一、导入新课
师:请看一看,你们的数学课本是多少钱?如果要买一本数学课本和《十分钟掌控课堂》一共要多少钱?
学生列式:5.78+12.50=
如果不知道《十分钟掌控课堂》的价钱,怎么办?能否用一个字母表示?
现在谁能说出一本数学书和《十分钟掌控课堂》一共要多少钱?
再请学生回答:5.78+x表示的是什么?
师:这个含有字母的式子也能表示数量,今天我们就来探讨这个问题。
板书课题:用含有字母的式子表示数量。
二、教学新课
1.学习例4第(1)题。
师:如果我告诉你们,我比XX大20岁,请算一算,XX同学在1岁、2岁、3岁……到现在11岁时,老师各是多少岁。随着学生回答,教师板书如下:
X的。年龄(岁)老师的年龄(岁)
11+20=21
22+20=22
请一名学生在黑板上接着写下去,其他学生在草稿本上写。
学生在写的过程中感到厌烦。
师:求老师岁数的问题提完了吗?(没有)为什么?
学生会说因为XX在不断地长大,XX的岁数每增加一岁,老师的岁数也增加一岁。
师:正因为我们的问题还没提完,所以还应该在这些算式后面打上省略号。
师:虽然XX和老师的岁数都在变化,但是什么没有变?(老师比XX大20岁)
师:我们已经学习了用字母表示数,能不能用一个简明的式子表示老师的岁数呢?
如果字母a表示XX的岁数,那么老师的岁数就是a+20(用其他字母表示也可以)。
在XX和老师的岁数下面接着板书:a与a+20。
师:从a+20这个式子里,你们知道些什么信息?
学生同桌议论或小组讨论,然后交流汇报:
a+20既表明了老师的岁数,又表明了“老师比XX大20岁”这个数量关系,所以,我们只要知道XX的岁数a,就能用这个数量关系算出老师的岁数。(注意:知道老师的岁数也能用这个数量关系算出XX的岁数。)
师:对,只要知道了XX任意一个岁数,就可以求出老师的岁数,我们可以试一试。如果XX7岁入学,老师几岁?
学生回答,教师板书:当a=7时,a+20=7+20=27(岁)
师:当XX19岁考入大学,老师几岁?
学生回答,教师板书:当a=19时,a+20=19+20=39(岁)
师:请同学们思考:如果用字母b表示老师的岁数,那么XX岁数怎么表示呢?
2.教学例4第(2)题。
“嫦娥二号”于2010年10月1日18时59分57秒在西昌卫星发射中心发射升空,并获得了圆满成功。这说明了什么?
出示:在月球上,人能举起物体的质量是地面上的6倍。
读题,引导学生按下面的过程自己推算,并填写下表。
师:这里的x表示什么?你是怎样理解6x的?
师:那么课本插图中的小朋友在月球上能举起的质量是多少?
学生计算后交流,教师板书:6x=6×15=90(kg)
师:如果用字母m表示在月球上能举起的质量,那地球上举起的质量怎么表示?
让学生看课本第47~48页,再想一想第(1)题、第(2)题中的字母分别可以表示哪些数?
师:但是要注意的是人的寿命是有限的,能举起的质量也是有限的,因此a、x表示的数也是有限的。
3.应用所学知识解决实际问题。
师:成年男子与女子的标准体重通常可以用下面的式子表示,身高用厘米数,体重用千克数。出示:
成年男子的标准体重=身高-105
成年女子的标准体重=身高-110
用含有字母的式子表示成年男子或成年女子的标准体重。
教师告诉学生自己的身高,让学生选择一个式子,算出教师的标准体重,再告诉学生教师的实际体重,与计算结果比较,评价教师的实际体重是否符合标准。(教师提示:与标准体重相差2千克之内都属于正常范围)
师:从这几个问题可以看出,用字母表示一些不确定的数量,可以很方便地帮助我们根据实际情况解决问题。
三、巩固练习
1.练习十第4题。(填写在课本上,独立完成后集体核对)
2、练习十第5题。(先独立思考,再填写在课本上,教师巡视指导有困难的学生,完成后交流)
3、练习十第8题。先同桌互相说出三小题中字母或式子所表示的含义,再全班交流。
4、机动练习:练习册32页第八、第十题。
四、课堂小结
五、作业:根据身高计算出爸爸妈妈的标准体重,然后和实际体重比较,然后对爸爸妈妈提些建议!