《最大公因数》教学设计【优秀9篇】

《《最大公因数》教学设计【优秀9篇】》由精心整编,希望在【最大公因数教学设计】的写作上带给您相应的帮助与启发。

全课总结 1

你对今天的课有什么评价?谈谈你的感想好吗?

板书设计:

最大公因数

16 的因数:1,2,4,8,16

12 的因数:1,2,3,4,6,12

16=2 × 2 × 2 ×2 18= 2 ×3×3

12=2 × 2 × 3 24= 2 ×2×2×3

(16,12)=2 × 2=4 (18,24)=2×3=6

教学目标: 2

1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。

2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。

3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。

教学过程: 3

一、复习导入

1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有 16 人,二排有 12 人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?

2.叙述:同学们学以致用的能力还真是很强,知道会用因数的知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片

[从学生的实际生活引入,可以激发学生的学习兴趣。]

教学难点: 4

了解求两个数的最大公因数的计算原理。

巩固练习 5

1.选两个数求最大公因数

12 和 18

99 和 132

24 和 30

39 和 65

2.找最大公因数。

(1)A=2×2×5×7

B=2×3×7

(A,B)=?

(2)甲数=A×B×C

乙数=D×E×F

(甲数,乙数)=?

3.反馈练习。

(1)直接写出下面各组数的最大公因数。

(27、9)(17、51)(13、39)((3、8)

(13、11)(15、16)(4、6)(6、8)

(8、24)(15、30)(16、48)(5、11)

(11、12)(13、17)

(2)填空。

小于10的最大偶数与最小合数的最大公因数是( )。

小于10的最大奇数与奇数中最小的质数的最大公因数是( )。

最小的质数与最小的合数的最大公因数是( )。

自然数中最小的两个质数的最大公因数是( )。

小于10的最大两个合数的最大公因数是( )。

甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是( ),乙数是( )。

教学重点: 6

理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。

教学用具: 7

自制课件。

探索新知 8

1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。

2.探究方法。

同学们先独立思考,再小组交流、讨论。

3.全班交流。

(1)说一说你是怎样安排的?

(2)为什么找 16 和 12 公有的因数就可以?出示动画9、找16和12公因数的动画

4.思考:像 1、2、4 这样,既是 16 的因数,又是 12 的因数,这样的数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?

过渡语:今天我们就重点来研究最大公因数。

5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?

6.说一说:最大公因数和公因数有什么关系呢?

7.试一试:你能找到 18 和 24 的公因数和最大公因数吗?

8.练习:口答最大公因数。

4 和6 24和8 5和7 6和11

问:你是怎样答出的?能说一说过程吗?

9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?

分解质因数法。

10.练习:求 24 和 36 的最大公因数(用喜欢的方法求)。

[在学生经历理解公因数、最大公因数的'意义,初步掌握求两个数的最大公因数的方法的过程中, 培养了学生的观察、比较、分析和概括的能力。]

教学内容: 9

课本 P79~81 例 1、例 2。

一键复制全文保存为WORD
相关文章