上学期间,大家都背过各种知识点吧?知识点也可以通俗的理解为重要的内容。相信很多人都在为知识点发愁,下面是小编精心为大家整理的正比例和反比例的意义(优秀3篇),希望能够给予您一些参考与帮助。
第二课时【教学内容】p56—58成反比例的量,练习十一 4—7。【教学目标】1、理解并掌握成反比例的量、反比例的意义。2、能正确应用反比例意义判断两种相关联的量是否成反比例。3、培养学生抽象概括、判断、推理能力。【教学过程】一、复习。1、举例说明什么是成正比例的量。2、判断下列各句中两种量是否成正比例,说明理由。⑴长方形的长一定,面积和宽。⑵《小学生数学报》的总价和份数。⑶余下的苹果重量一定,总重量与吃去的重量。二、新授。1、教学例4。⑴出示例4,观察表格。⑵根据问题思考:表中有哪两种量?它们的变化有什么规律?⑶总结概括:两种相关联的量是每天运的数量和时间,时间随着每天运的数量的变化而变化;规律是它们的积一定。⑷数量关系式。2、教学例5。根据书上问题自己回答总结,注意表述完整。3、揭示反比例关系。⑴揭示意义并分析。⑵运用意义分析例4、例5。⑶用字母表示:y=k(一定)4、教学例6。三、总结。什么是成反比例的量?怎样判断两种量是否成反比例?四、练习。1、完成练一练1、2。2、完成练习十一4。3、练习十一 5 (1—3)五、作业。练习十一 5(4—10)
第三课时【教学内容】p61页例7,练习十二1—3。【教学目标】1、通过对比分析,使学生正确理解成正比例与成反比例量的特征。2、能正确应用意义判断两种相关联的量成不成比例,成什么比例。【教学重点】理解成正、反比例的特征。【教学过程】一、复习。1、说说什么是成正比例的量。2、说说什么是成反比例的量。二、新授。1、教学例7。⑴出示例7两表。⑵回答问题:①表中各有哪两种相关联的量?②两种量是怎样变化的?变化规律各有什么特征?③哪两种量成正比例关系?哪两种量成反比例关系?为什么?⑶总结:路程、速度和时间三种量存在着相依关系。写出三道关系式。对照定义确定,某种量一定时,另外两种量成什么比例关系?2、教学用图像表示正、反比例关系。⑴出示两张坐标图,引导学生理解图像的含义。⑵在图上分别描出例7两张表中的数据所对应的点,说明各点所表示的含义。⑶用线将靠近的两点联系起来,可以看出,成正比例关系的各点连线是一条上升的直线,成反比例关系的各点连成一条曲线。3、比较正、反比例异同。在观察的基础上,概括出正反比例的相同点和不同点:正比例关系反比例关系相同点两种量是相关联的,一种量随着另一种量变化而变化。不同点两种量变化方向相同—=k(一定)两种量变化方向相反y=k(一定)三、巩固练习。1、练一练1、2。2、练习十二1。3、练习十二2(1—5)。四、总结。说说正、反比例关系的相同点和不同点。五、作业。练习十二2(6—10)
教学内容:p39~41 成正比例的量
教学要求:
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
教学过程:
一、四顾旧知,复习铺垫
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
二、引导探索,学习新知
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,
3小时行驶270千米,4小时行驶360千米,
5小时行驶450千米,6小时行驶540千米,
7小时行驶630千米,8小时行驶720千米……
(1)出示下表,填表
一列火车行驶的时间和路程
时间
路程
填表,思考:在填表中你发现了什么?
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)
根据计算,你发现了什么?
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)
(2)教师小结:
同学们通过填表,交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2、教学例2:
(1)花布的米数和总价表
数量
1
2
3
4
5
6
7
……
总价
8.2
16.4
24.6
32.8
41.0
49.2
57.4
……
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)
3、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3)看书p39,进一步理解正比例的意义。
(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
x/y=k(一定)
(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?
4、看书p40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、p41做一做
2、p43~44练习七第1~5题。
教后反思
第四课时【教学内容】练习十二4—8。【教学目标】通过练习,使学生正确掌握三种相关联的量之间某种量一定时,另两种量所成的比例关系。【教学难点】说出判断理由。【教学过程】一、基本训练。1、说出什么样的量是成正(反)比例的量?2、说出成正比例与成反比例的量的联系与区别。3、判断下列各句中的两种量成不成比例?成什么比例?为什么?⑴时间一定,路程与行驶的速度。⑵每天烧煤量一定,一批煤的总数与烧的天数。⑶正方形的边长与周长。⑷正方形的边长与面积。⑸三角形的面积一定,三角形的底与高。⑹用砖铺会议室的地面,每块砖的面积与用砖的块数。二、综合练习。根据下列各题中三个量的关系,确定某种量一定时,另外两种量成什么比例关系?1、小麦的重量、面粉的重量、出米率。2、圆柱的侧面积、高、底面直径。3、从甲地行往乙地、已走的路程、余下的路程。4、购买衣服的单价、数量、总价。5、在100米赛跑中,路程、速度、时间。三、提高练习。要求同上。6、x÷y=z7、a·b=c8、c=2πr四、总结与作业。完成书上4—8题。