反比例函数教案【精选11篇】

作为一位无私奉献的人民教师,总归要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么写教案需要注意哪些问题呢?以下是细致的小编老李帮大伙儿分享的11篇反比例函数教案,欢迎阅读,希望对大家有一些参考价值。

初中反比例函数教学设计 篇1

上完此节课后,我回忆着这节课的段段细节,不断思索着这节课的成功之处与不足之处,希望能使自己在这节课中获得更大的收获。

在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性。由于此节课是以现在最热门的房产买卖为切入点,从生活中买房的例子出发,从一开始就吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥。由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动。在正反比例解析式及其性质的比较中,学生能自主分析,解决问题。在图象画法比赛中,许多学生能积极指出图象的优缺点,并且不断发现图象画法的不足之处。这样让学生自己发现问题,自己解决问题,既提高了他们画图的本领,更为后面学习图象性质做了铺垫。当对图象性质进行小组讨论时,许多学生能积极思考,互相反驳,互相提问解决问题,并且运用类比方法进行分析。应当说这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈,使我也能充分发挥。

在课程设计中,我将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的。由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的。

在这节课中,多媒体教学也起了举足轻重的地位。在电脑课件的帮助下,这节课变得比较充实丰富。而电脑动画更是使复杂问题变得简单化。当然这节课存在很多不足之处。例如后半节课有些紧凑等等。

反比例函数教案 篇2

教学目标

1、 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2、 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3、 使学生会画出反比例函数的图象。

4、 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点

1、 使学生了解反比例函数的表达式,会画反比例函数图象

2、 使学生掌握反比例函数的图象性质

3、 利用反比例函数解题

教学难点

1、 列函数表达式

2、 反比例函数图象解题

教学过程

教师活动

一、作业检查与讲评

二、复习导入

1、什么是正比例函数?

我们知道当

(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)

创设问题情境

问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析 和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。因为在匀速运动中,时间=路程÷速度,所以

从这个关系式中发现:

1、路程一定时,时间t就是速度v的反比例函数。即速度增大了,时间变小;速度减小了,时间增大。

2、自变量v的取值是v>0.

问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析 根据矩形面积可知

xy=24,即

从这个关系中发现:

1、当矩形的面积一定时,矩形的一边是另一边的反比例函数。即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

2、自变量的取值是x>0.

反比例函数教案 篇3

教学目标:

1、能运用反比例函数的相关知识分析和解决一些简单的实际问题。

2、在解决实际问题的过程中,进一步体会和认识反比例函数是刻

画现实世界中数量关系的一种数学模型。

教学重点运用反比例函数解决实际问题

教学难点运用反比例函数解决实际问题

教学过程:

一、情景创设

引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?

反比例函数在生活、生产实际中也有着广泛的应用。

例如:在矩形中S一定,a和b之间的关系?你能举例吗?

二、例题精析

例1、见课本73页

例2、见课本74页

例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数

(1)写出这个函数解析式

(2)当气球的体积为0.8m3时,气球的气压是多少千帕?

(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?

三、课堂练习课本P74练习1、2题

四、课堂小结反比例函数的应用

五、课堂作业课本P75习题9.3第1、2题

六、教学反思

《反比例函数》教师教案 篇4

备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

1、为何值时,为反比例函数?

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂教学:

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

《反比例函数》教学设计 篇5

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。

解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式。

难点:反比例函数表达式的确立。

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。由于是分式,当x=0时,分式无意义,所以x≠0。

当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y=(2)xy=10(3)y=k—1x(4)y=—

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

kx?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=

已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。

《反比例函数》教学设计 篇6

教学目标:

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

教学程序:

一、导入:

1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

2、U=IR,当U=220V时,

(1)你能用含R的代数式表示I吗?

(2)利用写出的关系式完成下表:

R(Ω)20406080100

I(A)

当R越来越大时,I怎样变化?

当R越来越小呢?

(3)变量I是R的函数吗?为什么?

答:①I=UR

②当R越来越大时,I越来越小,当R越来越小时,I越来越大。

③变量I是R的函数。当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数。

二、新授:

1、反比例函数的概念

一般地,如果两个变量x,y之间的关系可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数。

反比例函数的自变量x不能为零。

2、做一做

一个矩形的面积为20cm2,相邻两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?

解:y=20x,是反比例函数。

三、课堂练习:

P133,12

四、作业:

P133,习题5.11、2题

反比例函数教案 篇7

教学目标

(一)教学知识点

1.进一步巩固作反比例函数的图象。

2.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。

(二)能力训练要求

1.通过画反比例函数图象,训练学生的作图能力。

2.通过从图象中获取信息,训练学生的识图能力。

3.通过对图象性质的研究,训练学生的探索能力和语言组织能力。

(三)情感与价值观要求

让学生积极投身于数学学习活动中,有助于培养他们的好奇心与求知欲。经过自己的努力得出的结论,不仅使他们记忆犹新,还能建立自信心。由学生自己思考再经过合作交流完成的数学活动,不仅能使学生学到知识,还能使他们互相增进友谊。

教学重点

通过观察图象,归纳概括反比例函数图象的共同特征,探索反比例函数的主要性质。

教学难点

从反比例函数的。图象中归纳总结反比例函数的主要性质。

教学方法

教师引导学生类推归纳概括学习法。

教具准备

投影片三张

第一张:(记作5.2.2A)

第二张:(记作5.2.2B)

第三张:(记作5.2.2C)

教学过程

Ⅰ.创设问题情境,引入新课

[师]上节课我们学习了画反比例函数的图象,并通过图象总结出当k0时,函数图象的两个分支分别位于第一、三象限内;当k0时,函数图象的两个分支分别位于第二、四象限内。并讨论了反比例函数

《反比例函数》教学设计 篇8

一、知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观

1、积极参与交流,并积极发表意见

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备

1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:

(1)复习已学过的反比例函数的图象和性质

(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程

一、创设问题情境,引入新课

复习:反比例函数图象有哪些性质?

反比例函数 y?k

x 是由两支曲线组成,

当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;

当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课

[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?

(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?

(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题。

师生行为:

先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动。

在此活动中,教师有重点关注:

①能否从实际问题中抽象出函数模型;

②能否利用函数模型解释实际问题中的现象;

③能否积极主动的阐述自己的见解。

生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=

所以储存室的底面积S是其深度d的反比例函数。

104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d

对应,反过来,知道S的一个值,也可求出d的值。

题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd

即施工队施工时应该向下挖进20米。

生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石。为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?

104 根据S=,把d=15代入此式子,得 d

S=104 ≈666.67. 15104. d

当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要。 师:大家完成的很好。当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,

三、巩固练习

1、(基础题)已知某矩形的面积为20cm2:

(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;

(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,

求其长为多少?

(3)如果要求矩形的长不小于8cm,其宽至多要多少?

2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗。

(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?

(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?

设计意图:

让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望。

师生行为:

由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题。

生:解:

(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米。

13000 所以,S·d=1000, S= 。 3d

(2)根据题意把S=100cm2代入S=30003000中,得 100= 。d=30(cm)。 dd

所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.

3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.

(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?

(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?

四、小结

1、通过本节课的学习,你有哪些收获?

列实际问题的反比例函数解析式

(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;

(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。

2、利用反比例函数解决实际问题的关键:建立反比例函数模型。

五、布置作业

P54—55.第2题、第5题

六、课时小结

本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。

反比例函数教案 篇9

一、教学设计思路

1、本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

2、对教材的分析

(1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3) 难点:探索并掌握反比例函数的主要性质。

二、教学过程

(一)作图象,试比较

1、提问:

(1)=4/x 是什么函数?你会作反比例函数的图象吗?

(2)作图的步骤是 怎样的

(3)填写电脑上的表格,开始在坐标纸上描点连线。

2、按照上述方法作 =—4/x 的图象

3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。

(二)细观察,找规律

1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

(1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。

(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

(三)用规律,练一练

1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。

2、判断一位同学画的反比例函数的图象是否正确。

3、下列函数中,其图象位于第一、三象限的有哪几个?在其图象所在象限内,的值随x的增大而增大的有哪几个?

(四)想一想,作小结

(五)作业:课本137页第1题、141页第2题

反比例函数教案 篇10

教学目标

使学生对反比例函数和反比例函数的图象意义加深理解。

教学重难点

重点:反比例函数的图象。

难点:利用反比例函数的图象解题。

教学过程

一、情境创设

反比例函数

解析式y=kx(k为常数,k≠0)

图象形状双曲线(以原点为对称中心)

k>0位置一、三象限

增减性每一象限内,y随x的增大而减小

k<0位置二、四象限

增减性每一象限内,y随x的增大而增大

二、例题讲解

例1.如图是反比例函数的图象的一支。

(1)函数图象的另一支在第几象限?试求常数m的取值范围;

(2)点都在这个反比例函数的图象上,比较、、的大小

例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,

求:(1)一次函数的解析式;

(2)△AOB的面积。

三、课堂练习

课本P70练习1、2题

四、课堂小结

1、反比例函数的图象。

2、反比例函数的性质。

五、课堂作业

课本P72/第5题

反比例函数教案 篇11

一、背景分析

1.对教材的分析

本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析

九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

二、教学过程

一、忆一忆

师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?

生:作一次函数的图象要采用以下几个步骤:

(1)列表

(2)描点

(3)连线。

生乙:一次函数的图象是一条直线。

师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数?

生:反比例函数。

师:你们能作出它的图象吗?

生:可以。

点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。

二、作图象,试比较

师:请填写电脑上的表格,并开始在坐标纸上描点,连线。

师:再按照上述方法作y=-4/x的图象。

(学生动手操作)

师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。

(学生讨论交流,教师参与)

师:讨论结束,下面哪个小组的同学说说你们的看法?

生1:它们的图象都是由两支曲线组成的。

生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。

点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。

三、细观察,找规律

师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。

(展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论)

师:请同学们谈一谈刚才讨论的结果。

生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。

师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。

(1)反比例函数y=k/x的图象是由两支曲线所组成的。

(2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。

(3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。

师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?

(由学生在电脑上进行操作)

生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。

师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。

题目:

(1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。

(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。

师:大家的观察很仔细,总结得也很正确。

点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。

四、用规律,练一练

1、课本137页随堂练习1

生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。

2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个?

(1)y=1/(2x)

(2)y=0.3/x

(3)y=10/x

(4)y=-7/(100x)

生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。

五、想一想,谈收获

师:通过今天的学习,你有什么收获?

生甲:我今天知道了怎样画反比例函数的图象。

生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。

生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大

生丁:我还能用反比例函数的相关性质解题。

师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。

总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。

教学反思:

本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。

一键复制全文保存为WORD
相关文章