“教师”就应是个具有高超的德行持重明达和善的人,同时又要具有能够经常庄重安适和蔼地和学生交谈本领。奇文共欣赏,疑义相如析,下面是小编给大家整编的数学负数的教案优秀8篇,欢迎借鉴,希望能够帮助到大家。
教材分析:本节课教材注意结合学生熟悉的生活情景,选取学生感兴趣的素材,唤起学生已有的生活经验,使他们在具体的情景中认识负数。通过明细中存入和支出的对比,进一步体会生活中用正负数表示两种相反意义的量。另外,在练习中还安排了用正负数表示相对于海平面的海拔高度、相对于北京时间的其它地区的时间等。
设计理念:世界是由许多相互矛盾的事物组成的。要想认识这个世界,改造这个世界,就要从这些矛盾的事物入手。数学教学与研究亦是如此。奇与偶,正与负,左与右,直与曲,动与静等,是一组组对立的概念,其中蕴含了对立统一、联系发展这些最朴素的哲学思想,要通过我们的数学课堂向学生渗透这些思想,这才是数学教学的出发点、落脚点和精髓。
学情分析:本节课是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情景初步认识负数,为此学生很容易理解正数、负数和0之间的关系。
教学重点:知道正数、负数和0之间的关系。
教学难点:在现实情境中了解负数的产生与应用。
教学准备:多媒体课件,温度计。
教学目标:
1、使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。
2、使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。
教学过程:
一、创设情境,初步认识负数。
1、情境引入:中央电视台天气预报节目片头。
出示例1:宜昌、哈尔滨的温度。
提问:你能知道些什么信息?
学生回答:宜昌是零上16度,哈尔滨是零下16度
引导:宜昌和哈尔滨的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?
请会的学生介绍写法、读法。同时在图片下方出示:16℃(+16℃)-16℃
师问:你们怎么知道的?
小结并板书:“+16”这个数读作正十六,书写这个数时,只要在以前学过的数16的前面加一个正号,“+16”也可以写成“16”;“-16”这个数读作负十六,书写时,可以写成“-16”。
【通过“零上16摄氏度”和“零下16摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的提出,让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求。同时,学生已有的生活经验,使他们能很快联想到在“16”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。】
二、进一步体验负数,了解正、负数与0的关系
1、课件出示例2直观图,银行取款与存款。
师::你从图中能知道些什么?你能用今天所学的知识表示取款预存款吗?
学生尝试表达,并说含义。
小结:存入2000元用+2000表示取出500元用-500表示,两个量正好相反,正数表示存入,负数表示取出。
2、归纳正数和负数。
【通过银行取款与存款,存入2000元用+2000表示,取出500元用-500表示则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。】
师引导:观察这些数,你能把它们分类吗?
请学生移动贴纸独立分类,汇报。
师问:你为什么这样分?
小结:像+16、19、+2000、、6.3这样的数都是正数,像-16、-、-7、-500这样的数都是负数。正数都大于0,负数都小于0。0既不是正数也不是负数。(完成板书)
三、反馈练习:
(1)完成第4页第1题。
(2)完成第4页第2题
提问:读一读下面的海拔高度,你知道些什么?(都是负数,低于海平面或比0小)
(3)完成第8页“练习一”第1题。
先读一读,指出下列各数中的正数、负数,并把它们填入相应的圈内。
提问:
①0为什么不写?(0既不是正数,也不是负数)
②观察这些正数,你发现了什么?(正数可以是整数、小数或分数。我们以前学过的除0以外的数都是正数)
③你是怎样理解负数的?(负数要小于0,可以是整数、小数或分数)
【本节课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,教师在习题中增加了小数和分数,通过练习让学生体会过去已学过的数(除0外)都是正数,沟通新旧知识的内在联系。】
四、课堂小结:
通过本节课的学习,你有什么收获?
五、课堂作业;
完成第8页“练习一”第2、3题。
六、教学反思: 通过本节课的教学,使学生初步认识到负数的客观存在,初步具有了负数的数学思想和学习了表示负数的数学方法,认识到了负数在生活中的实际应用是客观存在和非常广泛的。
第二课时 比较正数和负数的大小
教学内容:比较正数和负数的大小(《义务教育课程标准实验教科书人教版数学》六年级(下册)第5~7页例3、例4。及相应的“做一做”,练习一第1题)
教材分析:本节课的教材是通过活动情境,在直线上表示从一点向两个相反方向运动后的情形,也就是在直线上表示正数、0和负数的内容,帮助学生进一步感受负数的意义,并初步建立数轴的模型,借助数轴来比较正数、0和负数之间的大小。初步体会数轴上的顺序,完成对数的结构的初步构建。
设计理念:在比较正数、0和负数的大小时,明确两层含义:一是所有负数小于0、小于正数;二是负数之间的比较,即值大的反而小,值小的反而大。总之,利用数轴来比较它们的大小,是最直观和有效的。
学情分析:本节课是在学生初步认识负数后,通过活动情境,用直线上的点来表示正数、0和负数的,这样有助于学生进一步感受负数的意义,并初步建立数轴的模型,同时借助数轴来比较正数、0和负数之间的大小,体会数轴上正、负数的排列规律。
教学重点:体会数轴上正、负数的排列规律。
教学难点:会在数轴上比较正数、0和负数的大小。
教学目标:1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学过程:
一、旧知孕伏:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示( )。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
[复习旧知,为探究新知作孕伏]
二、探究新知:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。)
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是什么数?从0起往左依次是什么数?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
[学生通过观察数轴上的点的对应数,很直观的体会到数轴上正、负数的排列规律]
3、反馈练习:做一做的第1、2题。
[通过练习,巩固新知]
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
[学生通过对温度高低的亲身体验进行交流、比较和借助数轴初步学会比较正数、0和负数之间的大小。]
三、巩固练习:做一做第3题:
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
五、教学反思:通过本节课的教学,让学生充分认识到负数不是老师强加给他们的,而是自然界以及人类生活中客观存在的,如果不引入负数,这些问题将无法表示,也无法解决。以此增强学生学习数学的主观能动性和自觉性,变要我学为
第三课时 负数的练习课
教学内容:负数的练习课(《义务教育课程标准实验教科书人教版数学》六年级(下册)第9页的练习一第4、5、6、7题)
教材分析:本节课教材是通过练习一第4、5、6、7题,反复借助数轴让学生进行强化训练,已达到巩固负数的意义,正确理解正数、负数和0之间的关系,能熟练的比较大小的目的。
设计理念:在学生已经初步认识了负数,理解正数、负数和0之间的关系的基础上安排的一节练习课,通过师生双边活动、生生合作,相互启发。反复借助数轴让学生进行强化训练,以达到巩固理解负数的意义,会用负数表示一些日常生活中的数量,正确理解正数、负数和0之间的关系,能熟练的比较大小,能用数学知识解决生活中的实际问题的目的。
学情分析:本节课是在学生已经初步了认识负数,理解正数、负数和0之间的关系的基础上,通过活动、学生与学生相互合作与启发,反复借助数轴让学生进行强化训练,很容易达到巩固负数的意义,正确理解正数、负数和0之间的关系,能熟练的比较大小的目的。
教学重点:巩固理解负数的意义,会用负数表示一些日常生活中的数量。
教学难点:能用数学知识解决生活中的实际问题。
教学准备:投影仪,多媒体课件。
教学目标:
1、能认读负数,会结合具体的量进行大小比较,懂得用负数表示一些日常生活中的数量。
2、培养学生解决生活中实际问题的能力。
3、在练习中渗透有关科学的知识。
教学过程:
一、谈话导入
上节课,我们学习了以前没有接触过的数,是什么数呢?(负数)经过前几次的学习,你现在知道负数的哪些知识了?(回忆整理负数的内容)今天,我们来进行相关的练习。
[回顾旧知,引入课题]
二、基本练习
1、引入:我们的“天气预报员”给我们调查了明天几个城市的天气情况,我们一起听一听,当当记录员。
(1)一个学生报天气预报,其他的学生进行记录。
(2)从记录的情况中你有什么发现?
(3)学生反馈。(复习正数和负数的读法、写法,比较温度的高低,知道温差的大小)
(4)同桌合作,互相启发,提出数学问题,请同桌解答。
2、教师:在我们的生活中,还有很多时候会用到正数和负数,请同学们一起来举例说一说。
学生:知识竞赛扣分用负数表示。
学生:向前走用正数表示,向后走就可以用负数表示。
学生:收入和支出分别可以用正数和负数表示。
[相互合作,相互启发,由浅入深,提出问题,应用数学方式解答]
三、指导练习
1、练习一第4、5、6题。
2、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、课堂作业
1、用正、负数表示。
我要学,收到事半功倍的效果。
教学目标
1.1 知识与技能:
1.在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
1.2过程与方法 :
经历负数的认识过程,体验比较、归纳总结的方法。
1.3 情感态度与价值观 :
感受数学与实际生活的联系,激发学习兴趣,培养学思结合的良好学习习惯,体会数学知识之间内在联系的逻辑之美。
教学重难点
2.1 教学重点
能用正、负数表示生活中两种相反意义的量。
2.2 教学难点
用负数解决生活中的实际问题。
教学工具
多媒体课件
教学过程
一、游戏引入
同学们,今天我们来玩个游戏轻松一下,游戏叫“我正你反”。游戏规则:老师说一句话,请你说出与它意思相反的话。
1、向上看(向下看)
2、向前走200米(向后走200米)
3、电梯上升15层(电梯下降15层)
4、零上10摄氏度(零下10摄氏度)
很好,接下来,老师换一个游戏规则。老师给大家看一幅图片(课件出示第2页例1的几幅图)。
二、初步感知
师:同学们以前有没有见过类似于第2页例1的几幅图的情景呢?
生:有,看天气预报的时候。
师:我国面积非常大,在同一个时间,不同的地区气温相差非常大。仔细观察这幅图,你看,这六个城市,你能读出这六个城市的天气怎样的吗?
出示例1情境图。
学生读一读。
三、认识负数
1、认识温度计,理解用正负数来表示零上和零下的温度。
师:(课件出示温度计)同学们,认识它吗?
生:温度计。
师:你知道它们表示什么?(课件出示℃、℉)
生:℃表示摄氏温度,读作“摄氏度”。
生:℉表示……
师:℉表示华氏温度,读作“华氏度”。 那我国用什么来计量温度呢?
生:我国用摄氏度来计量温度。
师:一大格表示多少摄氏度?一小格表示多少摄氏度?
通过课件展示让学生对温度计做进一步的认识,让学生知道一大格表示10摄氏度,一小格表示2摄氏度。
师:0摄氏度怎样规定的?你知道吗?
生:水结冰的温度定为0℃。
师:是的,科学家把水结冰的温度定为0℃。读作:0摄氏度。比0℃ 低的温度叫零下温度,通常在数字前加“—”(负号)
师:零上温度用正数表示 ,零下温度用负数表示。
师:那零上10摄氏度记作?:+10℃ 零下10摄氏度记作?:-10℃
生:零上10摄氏度记作:+10℃;零下10摄氏度记作:-10℃ 。
2、读出水银柱所表示的温度。(课件出示)
教师课件出示水银柱所表示的温度,引导学生读一读。
3、从上面的天气预报图中你了解到哪些信息?
例如:北京最高温度是5℃,最低温度是零下5 ℃。
师:北京-5℃和5℃一样吗?都表示什么意义呢?
生:-5℃和5℃不一样, -5℃表示比零度还要低5摄氏度, 5℃表示比零度高5摄氏度。
生:-5℃和5℃不一样, -5℃比零摄度冷, 5℃表示比零摄氏度热。
教师小结:5℃和- 5℃表示具有相反意义的量。
4、正确读出例1中的各个城市的天气温度。
师生一起小结:当气温高于0℃的时候,我们在数字前面加一个“+”号或者直接用数字来表示,读作零上×××摄氏度。当气温低于0℃的时候,我们在数字前面加一个“-”号来表示,读作零下×××摄氏度。因此,+5℃表示零上5摄氏度,读作正三摄氏度;-5℃表示零下5摄氏度,读作负三摄氏度。(板书:+5℃ 正三摄氏度;-5℃ 负三摄氏度)
学生自主完成例1的信息表,然后和同桌说说各数表示的意思。
指名学生回答,教师点评并总结。
5、教学教材第3页例2。
师:接下来我们再来看一下第3页例2的图片,每个数字表示什么意思?
生:“2000”表示存入2000元。
生:“-500” 表示支出了500元。
生:“-132” 表示支出了132元。
生:“500”表示存入500元。
师:你能找到意思相反的词语或者数学符号吗?(提示2000.00与+2000.00代表相同的意思。)
师:那在这里500.00和-500.00分别表示什么意思呢?
生:500.00表示存入500元, -500.00表示支出500元
学生说出各个数字的含义。
教师小结:500和-500表示具有相反意义的量。
师:很好,同学们再试着说说图中其他数各表示什么。
学生交流。
6、思考总结
教师引导学生比较例1和例2,找出他们的共同点。
师:同学们比较一下例1和例2,他们有什么共同点吗?
学生小组讨论汇报。提示:在例1和例2中,都有两种数来表示两种相反意义的量—零上温度和零下温度,支出与收入。
7、0是什么数?
师:我们把海平面的高度看做多少呢?
生:看作0。
师:(课件展示)比海平面高的用(+几或几)表示,例如+5000米比海平面低的用(-几)表示,例如-2000米
把海平面0当成正数和负数的分界线。
师:(课件展示)珠穆朗玛峰比海平面高8844.43米,怎么表示?
生:记作+ 8844.43米。
师:吐鲁番盆地比海平面低155米,如何表示?
生:记作-155米。
课件展示小知识:海平面,顾名思意,就是大海的水面。它用在测量地面高度上,又称海拔。我国所有的大地测量和标志,都是以黄海海面的基点开始的,任何海拔标高,都是相对于黄海海面的基准点。
(通过对海平面的认识,温度计上的0,得出0像一条分界线,把正负数分开,所以0既不是正数也不是负数。)
小结:为了表示两种相反意义的量,这里出现了一种新的数:-16,-500。像-16,-500,-3,-0.4……这样的数叫做负数。- 读作负八分之三。
而以前所学的16,2000, ,6.3……这样的数叫做正数。正数前面也可以加上“+”号,例如+16,+ ,+6.3等(也可以省去“+”号)。+6.3读作正六点三。
师:0像一条分界线,把正负数分开。0既不是正数,也不是负数。
8、做一做
课件出示题目:
(1)、用正负数表示。
①、零上12.5摄氏度表示为:________,(+12.5 ℃)
零下3.5摄氏度表示为:________。(-3.5 ℃)
②、广西某地有一天坑,
坑口高于海平面125m,表示为:________, (+125)
坑底低于海平面 m,表示为:________.(—100)
(2)、先读一读,再议一议:观察这些数,可以怎样分类?
学生同桌讨论,教师指名汇报。
9、教师引导学生总结:数可以分成正数、0、负数。正数包括正整数、正分数、正小数 ,负数包括负整数、负分数、负小数 ,0既不是正数,也不是负数。它是正、负数的分界点。
正数前面可以写“+”,但通常不写,而负数前面的“-”必须写。正数前面可以读“正”,但通常不读(如果有“+”号必须读),而负数前面的“负”必须读。
四、走进生活
师:负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。课件出示题目进行检测:
1.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 __________。月球表面的最低温度是 __________。(100℃,0℃, -88.3 ℃, -183℃)
2、做一做
胜5场记作 _______, 读作_________;(+5场,正五场)
输3场记作 _______ , 读作 _________。(-3场,负三场)
收入100元记作_______,读作___________;(+100元,正一百元)
支出200元记作_______ ,读作___________。(-200元,负二百元 )
学生交流,指名说一说。
3、叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?
学生交流,指名说一说。
4、六年级三个班进行智力抢答赛,答对一题得10分,答错一题扣10分,不答得0分。根据三个班的得分,说一说他们的答题情况。
学生交流,指名说一说。
5、你会用正负数表示下面各地的海拔高度吗?
(1)、华山比海平面高2000m,记作(+ 2000m )
(2)、死海比海平面低392m,记作(- 392m )
学生交流,指名说一说。
6、我能判断对错
(1)任何一个负数都比正数小。(√)
(2)一个数不是正数就是负数。(×)
(3)因为“4”前面没有“+”号,所以“4”不是正数。(×)
(4)上车5人记作“+5人”,则下车4人记作“-4人”。( √)
(5)正数都比0大,负数都比0小。(√)
(6)5゜C和+5゜C所表示的气温一样高。(√)
7、小结交流
师:你还在什么地方见过负数吗?
生:家庭收支账本上。
生:冰箱的冷冻室温度。
生:地图上显示的海拔高度。
五、巩固练习
1、教材第4页“做一做”第1题。
学生独立读出-3℃和-18℃这两个温度,并根据题干思考北京和哈尔滨的温度哪个低些。
教师指名回答。
2、教材第4页“做一做”第2题。
学生小组依次回答,教师集体订正。
教师强调:0既不是正数,也不是负数。
课后小结
师:通过这一节课的学习,你有什么收获?
师:这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
板书
认识负数
+5℃ 正三摄氏度 -5℃ 负三摄氏度
5 三 -5 负三
八分之三 -
负八分之三
0既不是正数,也不是负数。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到。5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。 2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。(2)负数比0小,正数比0大,负数比正数小。
教学目标
1、使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2、 会初步应用正负数表示具有相反意义的量;
3、使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4、培养学生逐步树立分类讨论的思想;
5、 通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加-号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的基准。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现具有相反意义的量的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构
1、正数、负数和零的概念
正数
负数
零
象1、2.5、 、48等大于零的数叫正数
象-1、-2.5, ,-48等小于零的数叫负数
0叫做零,0既不是正数也不是负数
2、有理数的分类
三、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带+号的数是正数,带-号的数是负数。例如: 一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当 表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如-6,-4,-2,0,2,4,6,不能被2整除的数是奇数,如-5,-4,-2,1,3,5
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
五、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:
3)注意概念中所用统称二字,它与说整数和分数是有理数的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说统称还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。
教学目标:
1、引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2、使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3、结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢你能举出一些这样的现象吗?
二、教学新知
1、表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续聊下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组相反意义的量。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
(3)展示交流。
2、认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上+表示转来6人,添上-表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像-6这样的数叫负数(板书:负数);这个数读作:负六。
-,在这里有了新的意义和作用,叫负号。+是正号。
像+6是一个正数,读作:正六。我们可以在6的前面加上+,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3、联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书: )
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4、进一步认识0。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨: -15 ℃~-3 ℃
北京: -5 ℃~5 ℃
深圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,-5 ℃读作:负五摄氏度或负五度,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
0是正数,还是负数呢?
在学生发言的基础上,强调:0作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对数进行重新分类:
(完善板书。)
5、练一练。
读一读,填一填。(练习一第1题。)
6、出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7、负数的历史。
(1)介绍
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学着作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:两算得失相反,要令正负以名之。古代用算筹表示数,这句话的意思是:两种得失相反的数,分别叫做正数和负数。并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1、表示海拔高度。(做一做第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2、表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。
3、(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4、表示时间。(练习一第3题。)
5、
净含量:100.1kg表示什么意思?
四、总结延伸
1、学生交流收获。
2、总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
理解0既不是正数,也不是负数。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、示例
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的`学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
六、课堂小结
七、布置作业
认识负数
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1·引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2·使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3·结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1·表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2·5千克,小华轻了
1·8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2·认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“—”表示转走6人(板书:+6
—6),这种表示方法和数学上是完全一致的'。
介绍:像“—6”这样的数叫负数(板书:负数);这个数读作:负六。
“—”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
负数
【教学目标】
1、在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题。
3、能借助数轴初步理解正数、0和负数之间的关系。
【重点难点】
负数的意义和数轴的意义及画法。
【教学指导】
1、通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的'广泛应用。
2、把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3、培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
【课时安排】
1课时
【知识结构】
1
第1课时负数的初步认识(1)
【教学内容】
负数的初步认识
(1)(教材第2页例1)。
【教学目标】
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】
体会负数的重要性。
【教学准备】
多媒体课件。
【情景导入】
1、教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出课题并板书:负数的初步认识(1)
【新课讲授】
教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。