在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是人见人爱的小编分享的倒数的认识教案设计(优秀8篇),如果对您有一些参考与帮助,请分享给最好的朋友。
教学目标:
1、知识与技能:
(1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。
(2)掌握求倒数的方法,并能正确熟练的求出倒数。
2、过程与方法:
引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:
(1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。
(2)通过亲身参与探究活动,获得积极成功的情感体验。
教学重点:
概括倒数的意义,掌握求倒数的方法。
教学难点:
理解“互为”、“倒数”的含义以及0、1的倒数。
教学方法:
创设情境、启发诱导、合作交流、自学与讲授相结合等。
课 型:新授课。
教学过程:
一、游戏激趣,揭示课题。
1、理解“互为”的含义。
朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(xxx和我互为朋友,我是xxx的朋友,xxx也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他
们二人的关系吗?(略)那我们能说xxx是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——
(父子关系、母女关系等)
2、简单理解“倒”。
师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。
二、新课教学。
(一)引导质疑。
学生算完后,观察并思考:这些题有什么共同的地方?
生1:得数是1 生2:乘积是1
除了乘积是一,因数还有什么特点(分子分母交换位置)
师再举例如: 5/4x4/5 7/10x10/73x1/3
进一步明确并(板书):乘积是1
生3:都是两个数相乘。 〈 板书 〉:两个数
1、 你们还能写出两个数乘积是1的算式吗?
那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)
出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。
师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?
比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。
生:
①模仿说
②同桌互说
2、理解意义:
(1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?
(互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)
倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
(2)以前我们学过这种两数间相互依存关系的知识吗?
(3)2/5和5/2的积是1,我们就说(生齐说)
(4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同
(5)辨析:下面的说法对吗?为什么?
A、2/3 是倒数。( )
B、得数为1的两个数互为倒数。( )
C、12712和x43712乘积是1 ,所以32127和32712互为倒数。( ) x=1,所以12、43、互为倒数。 ( )
3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。
(二) 探索求一个倒数的方法
1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)
根据这一特点你能写出一个数的倒数吗? 试一试!
2、写出下列各数的倒数:3/5 7/2 5 13
(1)先写3/5的倒数。教师查看学生书写的情况。
(2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示
3/5 的倒数是( ) 7/2 的倒数是( )
5 的倒数是( ) 13 的倒数是( )
师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)
师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。
3、1和0的倒数
师:那1 的倒数是几呢?为什么?
0的倒数呢?
师:为什么?
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、把这此分数的分子分母调换位置后?(生齐:分母就为0了,而分母不可以为0。)
4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。
三、练习巩固。
1、判断题:
①互为倒数的两个数,乘积是1。 ( )
②任何假分数的倒数是真分数。 ( )
③因为3x1/3=1,所以3是倒数。 ( )
④1的倒数是1。 ( )
2、思考题:
3/8x( )=( )x=( )x6=1
3、找出马小虎的日记错误并改正。
今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3x1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。
瞧!我学的怎么样!
四、全课小结
同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。
五、作业
课本26页第4题。
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的倒数的求法。
教具准备:课件
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
出示例7
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
师:2/5和5/2的积是1,我们就说??(生齐说)
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数 求带分数的倒数的方法:带分数
三、 分数倒数。 倒数。 假分数
师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3把这此分数的分子分母调换位置后。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1 的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。 )
四、巩固练习
1、打开书,阅读课本P34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是( ) (2)9/7的倒数是( )
2/5的倒数是( )10/3的倒数是( )
4/7的倒数是( ) 6/5的倒数是( )
(3)1/3的倒数是( ) (4)3的倒数是( )
1/10的倒数是( )9的倒数是( )
1/13的倒数是( )14的倒数是( )
由学生说出各数的倒数。然后
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。
生4:我发现分子是1的分数。
4、填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、课堂小结
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计
倒数的认识
乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。
0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小数的倒数的方法: 求带分数的倒数的方法:带分数
分数假分数 倒数。 倒数。
教学目标:
1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学过程:
一、情境导入,引出问题
1. 谈话理解“互为”。
师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?
让一名学生(甲)说出自己的好朋友是谁?(乙)
师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2. 游戏,按规律填空。
吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )
(1 )学生观察填空,指名回答,并说出是怎么样想的。
(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的认识。
5. 师:看到这个课题,大家想提什么问题?
根据学生回答,选择板书。如:
(1 )什么是倒数?
(2 )怎么样求一个数的倒数?
(3 )认识倒数有什么作用?……
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、 合作探究、解决问题
1. 探究倒数的意义。
(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?
(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?
(3 )小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
A :分子、分母相互调换位置的两个数叫做互为倒数。
B :乘积是1 的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)
2. 探究求倒数的方法。
(1 )学习例1 :写出7/8 、5/2 的倒数。
A :学生试写,教师巡视,提醒书写格式。
B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
C :学生交流求一个分数倒数的方法。
(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A :学生选择一种研究,教师巡视指导。
B :学生交流汇报,教师分别板书一例。
C :引导学生概括求倒数的方法。
(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。
1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?
1 的倒数是它本身,0 没有倒数。
求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1. 下面哪两个数是互为倒数。
4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8
2. 写出下面各数的倒数。
4/11 , 16/9 , 35 , 15/8 , 1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3. 争当小法官,明察秋毫。
(1 )1 的倒数是1 。(2 )所有的数都有倒数。
(3 )3/4 是倒数。(4 )A 的倒数是1/A 。
(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。
(6 )7/5 的`倒数是7/2 。
(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。
(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。
4. 填空。
3/4 ×( )=1 7 ×( )=1
2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1
5. 游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
教学目标:
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程
3、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点:掌握倒数的意义,会求一个数的倒数。
教学难点:0为什么没有倒数
教学过程:
一、口算引入,揭示课题。
师:出示口算题
(评析:上课伊始,让学生进行简单的口算并进行分类,揭示课题,直奔重点,有利于让学生在一节课的最佳时域知晓今天研究的是乘积是1的两个数的关系特点。教师只有确立了以学生为本的概念,充分了解学生的学习起点和学习疑难症结,把握学生跳动的脉博,才能有针对性地下功夫。)
二、自学课本,初步理解倒数的意义。
(评析:教师恰到好处地设置疑问,有利于学生层层深入地思考,同时,老师有时假装糊涂,把聪明留给学生,老师忘了,谁来帮忙,短短的话语满足了学生求知探新的成功欲,这时促进学生有效学习的基本策略。)
三、举例验证,深入探究倒数的意义。
(评析:对于概念的教学,我们老师大多比较轻视,认为让学生读一、二遍记住就达到目的了。其实,这是表面现象,根本不能促使学生数学思维品质的提高。所以,让学生关注基础知识的本身,这是我们数学教师不能丢的根本,也是实现新课程提出的三维目标的关键,重要的是让学生在掌握概念的过程中,学会数学思考,体会解决问题所带来的'成功体验。
四、仔细观察,探究求倒数的方法。
五、综合练习:
(总评:数学的本质是一种沟通与合作,教师创设了与学生围绕倒数
这个知识目标进行民主、平等、和谐、生动的对话交流,在交流中,包含了知识信息和情感态度,行为规范等多方面的有机组合,促进了学生多方面素养的提高。本课教学活动让学生经历了学习数学知识的全过程,着力培养了学生的数学思维。)
教学内容:
人教版六年制小学数学课本第十一册《倒数的认识》。
教学目标:
1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。
教学想法:
去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。
一、直接导入,展示目标。
1.出示课题:倒数的认识。
看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。
2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)
二、研究学习,到达目标。边学边练
1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。
把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)
2.概括“倒数”的意义。
下定义:乘积是1的两个数互为倒数。
尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。
3.怎样求一个数的倒数?
你能找出与这些数互为倒数的数吗?
4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。
小结方法:谁发现了求一个数的倒数的方法?
特例:0没有倒数?
5.作业指导。求一个数的倒数的过程。
求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?
小红:3/5=5/3
小明:3/5的倒数是5/3。
6.当堂作业:P24的。做一做。P25的第4题。做在书上。
三、拓展目标,巩固提高。
1.判断:(对的在括号里打“√”,错的打“×”)
2。开放性填空。(假定法)
四、自主小结,延伸目标。
谈谈自己的收获和学习体会。
教后反思:
1.教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。
2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。
3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:
理解倒数的意义,求一个数的倒数。
教学难点:
从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/7 5×1/5 0。25×4
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)
你是怎样想的?如0。5、1。7
3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1。25 1。2 0学生独立完成,然后交流。
(1)先说说你找到的这个数的倒数的,你是怎样找的?
(2)在找这些数的倒数中,你有什么想说的?
3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)
四、巩固深化。
1、做一做,写出下面各数的倒数,并说说你是怎样想的。
2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。
3、判断题。书上第25页的第3题。
补充:(3)2/5×5/2=1,那么2/5是倒数。
(4)任何一个数都有倒数。
(5)如果一个数是A(0除外),那么这个数的倒数就是1÷A。 重点讨论:一个数的倒数一定比这个数小。
那么哪些数的倒数比原数小、大或相等。
4、完成作业:作业本第12页的1、2、3题。
五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?
教学内容:六年级上册第二单元倒数的认识。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法。
2、提高学生观察、比较、、概括的能力。
3、感悟“变通”的数学思想。
教学重点:倒数的意义与求法。
教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。
教学程序:
一、激趣导入,揭示课题。
师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?
(生:上下两部分调换了位置,变成了另一个字)
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识
二、引导质疑,自主探究。
1、引导质疑。
师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
2、游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?
好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。
3、揭示倒数的意义
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数
你认为哪个词非常重要?你是如何理解“互为”的?生回答
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
强调:(1)乘积必须是1。
(2)只能是两个数。
(3)倒数是表示两个数的关系,它不是一个数。
4、小组探究求一个倒数的方法
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。100、1、0 1、2、3 0.5、3.4、0.23
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
三、巩固练习,内化提高。
1、判断题。
2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。
师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。
交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。
(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)
师:是不是所有真分数的倒数都是假分数?
(出示结论:所有真分数的倒数都是假分数)
师:第二组(这组分数都是假分数,它们的倒数都是真分数。)
师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)
所以——(卡片结论:大于1的假分数的倒数都是真分数。)
师:第3组呢?(这组分数的倒数都是整数。)
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)
师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的`倒数都是分数单位)
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
四、总结反思,发展能力。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
师:你能用“我学会了--”来描述今天学到的知识吗?
生:。.。.。.。
五、学科融合
今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?
教学目标
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点
理解倒数的意义;求一个数的倒数。
教学难点
理解“互为倒数”的含义。
教学准备
教学课件、写算式的卡片。
教学过程
具体内容 修订
基本训练,强化巩固。
(3分钟)
1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。
(2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。
(1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。
(6分钟)
1、 观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。
(4分钟) 让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。
(8分钟)
1、学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2、认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书