作为一位杰出的教职工,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?以下是人见人爱的小编分享的整式的加减教案【优秀6篇】,希望大家可以喜欢并分享出去。
一、重点
单项式及其相关的概念;
多项式及其相关的概念;
去括号法则,准确应用法则将整式化简。
二、难点
区别单项式的系数和次数;
区别多项式的次数和单项式的次数;
括号前面是“—”号去括号时,括号内各项变号容易产生错误。
三、知识点、概念总结
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2、系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1、
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5、常数项:不含字母的项叫做常数项。
6、多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7、多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8、多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
一、教学目标
【知识与技能】
在具体情境中认识同类项,通过对具体问题的分析及运用分配律,了解合并同类项的法则,学会进行同类项的合并。
【过程与方法】
经历观察、类比、思考、探索、交流等教学活动,培养创新意识和合作精神。
【情感态度与价值观】
在整式加减的学习中培养学生合作交流、勇于探索的学习习惯,发展学生的`符号感。
二、教学重、难点
【重点】
学会进行整式的加减法运算,并能说明其中的算理;经历字母表示数量关系的过程,发展符号感。
【难点】
灵活的列出算式和去括号。
三、教学过程
通过例题的分析总结:合并同类项
1.同类项的系数相加;
2.字母和字母的指数不变。
(五)小结作业
小结:今天这节课我们学习了整式加减的合并同类项,什么是同类项?如何合并同类项?
作业:课本习题,预习下节课学习的知识。
四、板书设计:
五、教学反思(略)
三维目标
一、知识与技能
能根据题意列出式子:会进行整式加减运算,并能说明其中的算理。
二、过程与方法
经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力。
三、情感态度与价值观
培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值。
教学重、难点与关键
1.重点:列式表示实际问题中的数量关系,会进行整式加减运算。
2.难点:列式表示问题中的数量关系,去掉括号前是负因数的'括号。
3.关键:明确问题中的数量关系,熟练掌握去括号规律。
教具准备:投影仪。
四、教学过程 引入新课
1.多项式中具有什么特点的项可以合并,怎样合并?
2.如何去括号,它的依据是什么?
五、新授
例1.(1)求多项式2x-3y与5x+4y的和。
(2)求多项式8a-7b与4a-5b的差。
例2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?
教材分析
本节课的主要内容是通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步学习多项式、整式的加减做充分的准备。
学情分析:
在小学他们已经学习过用字母表示数,这对于他们进一步学习用字母表示简单的数量关系是有帮助的,因此在教学过程中除了引导他们正确地用字母表示数量关系外,应把重点放在他们对单项式有关概念的理解和运用上,为整式的加减做准备。
教学目标:
知识与技能
1、了解代数式的概念,会列代数式表示简单的数量关系,掌握代数式的书写注意事项;
2、理解单项式的概念,掌握单项式的系数和次数的概念,能判断一个代数式是不是单项式,对于一个单项式能说出它的系数和次数。
过程与方法
1、通过练习、合作探究用字母表示简单的数量关系,
2、通过引导学生自主学习、合作学习及变式训练掌握单项式、单项式的系数和次数的概念。
情感态度与价值观
1、通过观察、体验、运用,让学生经历探索数量关系和变化规律的过程,感受到用字母表示数的优越性。
2、在进一步理解用字母表示数量关系的过程中建立符号意识,激发学生学习数学的积极性。
教学重点难点及突破
1、本节课的直接目标是让学生了解用字母表示数的概念,理解单项式有关的概念,能分清代数式中的那些是单项式,并知道它们的系数和次数。
2、重难点的突破在于用字母表示数量关系及理解单项式有关的概念。
教学准备:多媒体课件
教学设计,
一、课前复习
字母表示数有什么意义?
(要求:自己思考1分钟,然后师友面对面,学友说给学师听!如果学友说不出,学师给学友说一遍,然后学友再说,意见达成一致后举手给全班说。)
(电子白板出示)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来,更适合于一般规律的表达。
二、教学过程
(一)出示学习目标,引入新课(幻灯片)
1、理解单项式及单项式的系数、次数的概念。(重点)
2、会准确迅速地确定一个单项式的系数和次数。
3、能用单项式表示具体问题中的数量关系。(难点)
(二)自主学习(幻灯片)
认真学习课本56页思考——例题3上面的内容。并完成《作业与测试》第41页自主预习的两个小题!(5—7分钟)
(要求:自主完成《作业与测试》,完成之后师友交流,意见达成一致后,举手答题!)
1单项式的含义:只有数与字母的积的代数式。
单独的一个数字或字母也叫单项式。
2单项式中的数字因数叫做这个单项式的系数。
3一个单项式中,所有字母指数的和叫做这个单项式的次数。(幻灯片)
(三)合作探究
1、练习1下列各式中哪些是单项式?如果不是,说下原因!
《整式---单项式》教学设计
(要求:个人观察思考,然后师友面对面,学友说给学师听,意见不一致可以讨论一下,意见一致后举手展示!)
学生展示完后出示结果:
《整式---单项式》教学设计
2、练习2填表:
《整式---单项式》教学设计
温馨提示:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!
学生展示完后出示答案!教师根据具体情况总结一下。
3、练习3用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有册;
(2)底边长为acm,高为hcm的三角形的面积是cm2;
(3)棱长为acm的正方体的体积是cm3;
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价
是元;
(5)一个长方形的长是0.9m,宽是am,这个长方形的面积是m2.
学生展示完后出示结果:
(四)拓展提高
我思我进步:
用字母表示数后,同一个式子在不同的问题中可以表示不同的含义。例如,在问题(5)、(6)中,所填的结果都是0.9a,一个是表示电视机的售价,一个表示长方形的面积,你还能赋予0.9a一个含义吗?
(一本书的价格是0.9a元,这块黑板的长是0.9a。)
在书写单项式时:归纳PPT
单项式的注意点
(1)圆周率π是常数。
(2)如果单项式是单独的字母,那么它的系数是1。如:单项式c的系数是1。
(3)当一个单项式的系数是1或–1时,“1”通常省略不写,但不要误认为是0,如:a,–abc。
(4)单项式的系数是带分数时,还常写成假分数,如:x2y写成x2y。
(5)单独的数字不含字母,所以它的次数是零次。
(6)单项式的系数包括它前面的符号,且只与数字因数有关。而次数只与字母有关。
三、课堂小结
让学生谈谈本节课的收获!
学友先说,学师补充的方式进行。
1、单项式(注意单个数或字母也是单项式)
2、单项式的系数(要包括其前面的负号)
3、单项式的次数(所有字母指数和)
四、布置作业
《作业与测试》整式(1)随堂学练与课后作业。
作业要求:
1、独立完成作业的良好习惯,是成长过程中的良师益友。
2、学友完成之后交学师看,学师的组长看,老师看组长的以及所有同学的作业!同时看学师的批改作业情况!
教学目标:
1、理解同类项的概念,在具体情景中认识同类项。
2、初步体会数学与人类生活的密切联系。
教学重点:理解同类项的概念。
教学难点:根据同类项的概念在多项式中找同类项。
教学过程:
一、复习引入
1、创设问题情境
(1)5个人+8个人= ;?
(2)5只羊+8只羊= ;?
(3)5个人+8只羊= 。?
2、观察下列各单项式,把你认为类型相同的式子归为一类。
8x2y, -mn2, 5a, -x2y, 7mn2,, 9a, -, 0, 0.4mn2,,2xy2.
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示出来。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
二、讲授新课
1、同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
2、例题:
【例1】判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。( )
(2)2ab与-5ab是同类项。 ( )
(3)3x2y与-yx2是同类项。( )
(4)5ab2与-2ab2c是同类项。 ( )
(5)23与32是同类项。( )
【例2】指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;
(2)3x2y-2xy2+xy2-yx2.
【例3】k取何值时,3xky与-x2y是同类项?
【例4】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1) (s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.
3、课堂练习:请写出2ab2c3的一个同类项。你能写出多少个?它本身是自己的同类项吗?
三、课时小结
1、理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断几个单项式是否是同类项。
2、这堂课运用到分类思想和整体思想等数学思想方法。
3、学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
四、课堂作业
若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是 。?
第2课时 合并同类项
教学目的:
1、理解合并同类项的概念,掌握合并同类项的法则。
2、渗透分类和类比的思想方法。
教学重点:正确合并同类项。
教学难点:找出同类项并正确地合并。
教学过程:
一、复习引入
为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问:
1、他们两次共买了多少本软面抄和多少支水笔?
2、若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
二、讲授新课
1、合并同类项的定义:
(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。(板书:合并同类项。)
2、例题:
【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项。
根据以上合并同类项的实例,让学生讨论、归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
【例2】下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy;
(3)7x2-3x2=4; (4)9a2b-9ba2=0.
【例3】合并下列多项式中的同类项:
(1)2a2b-3a2b+0.5a2b;
(2)a3-a2b+ab2+a2b-ab2+b3;
(3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4.
(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数。)
【例4】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.
试一试 把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?
(通过比较这两种方法,使学生认识到:在求多项式的值时,常常先合并同类项,再求值,这样比较简便。)
3、课堂练习:课本P65练习第1,2,3题。
三、课时小结
1、要牢记法则,熟练正确地合并同类项,以防止出现类似2x2+3x2=5x4的错误。
2、从实际问题中类比概括得出合并同类项法则并能运用法则,正确地合并同类项。
四、课堂作业
课本P69习题2.2的第1题。
第3课时 去括号
教学目标:
1、能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
2、经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
教学重点:准确应用去括号法则将整式化简。
教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误。
一。预习提问
1、括号外的因数是正数怎样去括号?
2、括号外的因数是负数怎样去括号?
二。教案
1.学习目标:
1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。
2)能正确且较为熟练地运用去括号法则化简代数式
2.能力目标:
1)培养学生的观察、分析、归纳能力。
2)锻炼学生的语言概括能力和表达能力。
3)培养学生的知识分解、知识整合能力。
3.情感目标:
1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
2)通过学生间的相互交流、沟通,培养他们的协作意识。
4.重点:去括号法则及其运用。
难点:括号前面是号,去括号时,应如何处理。
5.教学过程:
(1)回顾旧知,承前启后
1、什么叫做同类项?
2、叙述合并同类项的法则
3、若a、b、c均为有理数,请指出以下代数式中的同类项及其系数,并进行合并。