作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那么什么样的教案才是好的呢?问学必有师,讲习必有友,本文是小编沉默帮助大家整编的13篇高中的教案,欢迎借鉴。
一、教学目标
1.使学生学会借助直观图,利用集合的思想方法解决简单的实际问题。
2.通过活动,使学生掌握解决重合问题的一些基本策略,体验解决问题策略的多样性。
3.丰富学生对直观图的认识,发展形象思维。
二、教学重点
初步学会利用交集的含义解决简单的实际问题。
三、教学难点
用图示的方法感受到交集部分。
四、教具准备
多媒体课件。
五、教学过程
(一)生活导入
1.看电影:两位妈妈和两位女儿一同去看电影,可是她们只买了3张票,便顺利地进了电影院,这是为什么?(外婆、妈妈、女儿)
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第3,你猜这队小朋友一共有几人?
教师引导学生:你能用你喜欢的方法解释一下吗?(让学生用画图来表示解释)
【生板书画画】
同学聪明活泼、思维活跃,非常喜欢发言,老师很高兴能和你们成为朋友,今天我们就一起上一堂数学活动课—-数学广角。
(二)温故知新
1.森林运动会要开始了,我们来看看小动物们组队参加篮球赛和足球赛的情况。
出示“报名表”:
(1)仔细观察这个表格,你们能发现哪些数学信息?同桌互相说说。
参加篮球赛的有几种动物?参加足球赛的呢?
(2)根据这些数学信息,可以提出什么问题?
学生提问:参加篮球赛和参加足球赛的一共有几种动物?
(3)谁能解决这个问题:17人、16人、15人、14人。
2.现在有几种不同的答案,那么到底参加篮球赛和参加足球赛的一共有几种动物?
为了解决这个问题,我们组织一个画图大赛,先画出你喜欢的图案,将表格中参加篮球赛、足球赛的动物写在画好的图案里。注意:怎样写才能使大家在你设计的图中一眼就能看出哪些是参加篮球赛、哪些是足球赛的,哪些是既参加篮球赛又足球赛的呢?看看哪个小组设计的图既简单又科学。
(1)小组合作,设计出多种图案。
(2)学生上台展示设计作品,其余同学当小评委。
(3)把展示的作品放在一起,你最喜欢哪一种,为什么?
3.老师也设计了一幅图案,你们也帮老师评一评好吗?【课件】
(1)课件出示:篮球赛足球赛
(2)对老师的设计有什么看法吗?
(3)老师根据你们的建议进行了修改,课件演示两集合相交的过程。
4.观察图,看图抢答:图中告诉你什么信息?【课件】
(1)参加篮球赛的有8种。
(2)参加足球赛的有9种。
(3)3种动物是既参加篮球赛又参加足球赛的。
(4)只参加篮球赛的有5种。
(5)只参加足球赛的有6种。
(6)参加篮球赛的和参加足球赛的有14种。列式表示:8+9-3=14(种)
①追问:为什么减去3?
(因为这3种既参加篮球赛又参加足球赛,是重复的,因此要去掉。)
②还可以怎样解答?说说是怎样想的?
5+3+6=14(种)
(只参加篮球赛的5人和只参加足球赛的6人与既参加篮球赛又参加足球赛的3人,解决的是问题。)
9-3+8=14(种)
(9-3表示只参加足球赛,再加上参加篮球赛的8人,也可以得到问题。)
教师介绍:这个图是一个叫韦恩的人创造的。
5.集合图与表格比较,有什么好处?
从图中能很清楚地看出重复的部分和其它信息。
(三)巩固练习
1.同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。
(1)春天到了,阳光明媚,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?
(2)学生说说动物名称。
课件出示比赛项目:游泳、飞行。
(3)小动物们可以参加什么项目呢?学生讨论、反馈。
(4)原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上)
(5)汇报:说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。学生边说边动画演示。
点到天鹅、海鸥时,说说它们应参加什么项目,为什么?要放在哪儿?这说明两个圆圈交叉的中间部分表示什么?
动画演示:既会飞又会游泳的。
2.动画6【P110——2】文具店。
同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗?
(1)课件出示:文具店。
课件演示:文具店昨天、今天批发文具的情况。
(2)观察图,发现了什么?(两天都批发了钢笔、尺、练习本)
昨天进的货有:(略),今天进的货有(略)
(3)两天共批发多少种货?
学生列式:5+5-3=75×2-3=75-3+5=7
(4)结合动画验证算式。
3.同学们去春游,带面包的有26人,带水果的有23人,既带面包又带水果的有48人。参加春游的同学一共有多少人?
(2)根据线段图学生列式:
26-10+2323-10+2626+23-10
(3)说说怎样想的?
4.动画11(集合图)
(1)看图说图意
(2)根据动画提供的素材学生列式
小结:我们在解决问题时,很好的利用了集合圈或者线段图帮助我们分析问题。
(四)归纳总结
通过这节课的学习,你有什么收获?
(五)机动练习
三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有13人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
教学内容:
义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。
教学目标:
1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。
2.数学思考目标:
能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3.问题解决目标:
(1).能借助直观图,利用集合的思想方法解决简单的实际问题。
(2).渗透多种方法解决重叠问题的意识。
4.情感态度目标:
(1)培养学生善于观察、善于思考的能力。
(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。
教学重难点:
1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。
2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。
教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。
学法指导:
1.借图观察、分析、讨论、交流、操作。
2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。
教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。
学具准备:常规学具、彩笔、作业本。
教学过程:
一、创设情境,引入新课
1.激情导入,引出例题
师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)
师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)
师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?
设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。
三一班某小组同学“献爱心”的情况:
捐款
黄娜
董泽
李彤
张阳
任一
捐物
孟涛
李彤
任一
吴越
张恒
张旭
生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。
生2:我发现捐款的有5人,捐物的有6人。
师:你能提出一个数学问题吗?
生1:捐款的比捐物的少几人?
生2:捐物的比捐款的多几人?
生3:捐款的和捐物的一共多少人?
2.设问质疑,引发冲突
师:参加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
师:这么一个简单的问题怎么会有这么多不同的答案呢?
生:里面的同学重复了。
师:哪里重复了?(李彤和任一,课件闪动。)
看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)
师:下面请同学们分组讨论,如何去调整表格?
二、小组交流,探究新知
1.分组讨论、调整表格。(各组代表汇报、操作、展示)
方案一:
捐款
李彤
任一
黄娜
董泽
张阳
捐物
李彤
任一
孟涛
吴越
张恒
张旭
师:你觉得你们组这样摆有什么好处?
生:把重复的两个同学摆在前面,能引人注意。
师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?
(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)
方案二:
捐款
李彤任一
黄娜
董泽
张阳
捐物
孟涛
吴越
张恒
张旭
师:哇!你们的摆法很独特,说说你们这样摆有什么好处?
生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。
师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。
设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。
(课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)
2.圈一圈。
师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?
设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。
3.探究韦恩图
师:为了让大家看的更清楚、更直观,请看大屏幕:
(1)取消表格。
表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。
(2)捐款的移到左边,捐物的移到右边。
(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)
设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。
(4)介绍韦恩图。
师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)
设计意图:介绍课外知识,拓宽知识视野。
师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。
4.列式计算。
(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。
师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。
(2)计算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)
讨论:为什么要减2?(因为有2个人既捐款又捐物)
方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)
设计意图:发展学生思维,体现方法多样化。
三、实践应用,巩固内化
师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:
1.举一反三(4道抢答题)
4.思维训练
三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。
四、总结质疑,自我提高
1.学生说这节课的收获并质疑
2.互相评价、共同提高(自评互评生评师师评生)
师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。
引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:
1.获得红花奖励的指哪些同学?
2.获得红星奖励的指哪些同学?
3.既获得红花奖励又获得红星奖励的指哪些同学?
4.只获得红花奖励的指哪些同学?
5.只获得红星奖励的指哪些同学?
6.获得红花奖励和红星奖励的一共有多少人?
设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。
五、作业布置,知识升华
我是小小设计师。(课后作业)
请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!
设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。
六、板书设计,凸显重点(体现学生的主体地位)
活动目标:
1、让幼儿做到能正确的判断6以内数的多、少、一样多。
2、会按商品的标价付款。
活动准备:
1、布置超市的情景,贴有1—6数字标价的商品若干(商品为废旧的半成品材料),每人2—3张纸币(为1—6的圆点纸片代替)。
2、教学挂图一副。
3、与本主题相符的`幼儿用书图画。
活动过程:
一、开始不分
组织幼儿,导入活动主题。
二、基本部分
1、目测数群。
出示挂图,开始活动。“乐乐超市今天开业了,我们来看看这组货架上有什么商品?”数一数:每种商品各有多少?想一想:还有什么好的方法能很快的知道它们的数量?引导幼儿先目测一组数群。然后再接着往下数,最后说出总数。
2、比较6以内数的多、少、一样多。
引导幼儿观看:看看水果架上的物品各是多少?谁多?谁少?怎么样变成一样多?知道橘子是5个,梨是6个,橘子比梨少一个,梨比橘子多一个。请小朋友一起来想办法,怎么样橘子跟梨就会一样多?
3、超市购物。
请根据商品的标价和自己的钱数“卡片上的圆点数”,购买自己喜欢的商品。
4、和小朋友们一起观察书中物品的多少,比较6以内数的多、少、一样多。
三、结束部分
教师点评,对幼儿进行鼓励、表扬。
活动延伸:
在角色游戏时,引导幼儿继续玩到超市购物的游戏,到超市时会看到商品的标价。
活动目标:
1.对数量在10 以内的两个集合进行多少的比较。
2.尝试正确说出两个集合的数量多几少几的关系。
重点难点:
《我的数学》第4页。
活动准备:
《我的数学》第4页。
活动过程:
一、教师通过幼儿和椅子的数量帮助幼儿进行两个集合之间的数量比较。先请几名幼儿站上来,再在幼儿面前随意放几张椅子。请其他幼儿判断幼儿和椅子的'数量谁多谁少,以及他们之间相差的数量,并说说自己的理由。最后请幼儿坐到椅子上来验证结果。
1.这里有几个小朋友(椅子)?你是怎么数的?
2.小朋友多还是椅子多?为什么?
3.小朋友比椅子多(少)几个?你是怎么知道的?
4.请小朋友坐到椅子上,多出了几个小朋友(几张小椅子)?你说对了吗?
二、再随意拿取教室里随手可得的物品,带领幼儿继续做练习,两个集合的数量都不要超过10,如果幼儿整体能力很强,教室可以尝试增加数量。但不要超过15。
三、请幼儿翻开《我的数学》至第4页,数一数画面上的椅子和被子分别有几个,并说出多出的数量。
活动反思:
让孩子在玩玩、想想、分分、吃吃中轻松学数学。活动中我给孩子提供了大量自主探索和操作练习的机会,让孩子在操作中探索,在探索中发现,在发现中理解,效果很好。
教材:集合的概念
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N或 N+
整数集 Z
有理数集 Q
实数集 R
集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性
(例子 略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 a(A ,相反,a不属于集A 记作 a(A (或a(A)
例: 见P4—5中例
四、练习 P5 略
五、集合的表示方法:列举法与描述法
列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{(1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
描述法:用确定的条件表示某些对象是否属于这个集合的方法。
语言描述法:例{不是直角三角形的三角形}再见P6例
数学式子描述法:例 不等式x-3>2的解集是{x(R| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见P6例
六、集合的分类
1、有限集 含有有限个元素的集合
2、无限集 含有无限个元素的集合 例题略
3、空集 不含任何元素的集合 (
七、用图形表示集合 P6略
八、练习 P6
小结:概念、符号、分类、表示法
九、作业 P7习题1.1
第二教时
教材: 1、复习 2、《课课练》及《教学与测试》中的有关内容
目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:
复习:(结合提问)
1、集合的概念 含集合三要素
2、集合的表示、符号、常用数集、列举法、描述法
3、集合的分类:有限集、无限集、空集、单元集、二元集
4、关于“属于”的概念
例一 用适当的方法表示下列集合:
平方后仍等于原数的数集
解:{x|x2=x}={0,1}
比2大3的数的集合
解:{x|x=2+3}={5}
不等式x2-x-6<0的整数解集
解:{x(Z| x2-x-6<0}={x(Z| -2
过原点的直线的集合
解:{(x,y)|y=kx}
方程4x2+9y2-4x+12y+5=0的解集
解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,-2/3)}
使函数y= 有意义的实数x的集合
解:{x|x2+x-6(0}={x|x(2且x(3,x(R}
处理苏大《教学与测试》第一课 含思考题、备用题
处理《课课练》
作业 《教学与测试》 第一课 练习题
第三教时
教材: 子集
目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念。
过程:
一 提出问题:现在开始研究集合与集合之间的关系。
存在着两种关系:“包含”与“相等”两种关系。
二 “包含”关系—子集
1、 实例: A={1,2,3} B={1,2,3,4,5} 引导观察。
结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,
则说:集合A包含于集合B,或集合B包含集合A,记作A(B (或B(A)
也说: 集合A是集合B的子集。
2、 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(B (或B(A)
注意: (也可写成(;(也可写成(;( 也可写成(;(也可写成(。
3、 规定: 空集是任何集合的子集 。 φ(A
三 “相等”关系
实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B, 即: A=B
① 任何一个集合是它本身的子集。 A(A
② 真子集:如果A(B ,且A( B那就说集合A是集合B的真子集,记作A B
③ 空集是任何非空集合的真子集。
④ 如果 A(B, B(C ,那么 A(C
证明:设x是A的任一元素,则 x(A
A(B, x(B 又 B(C x(C 从而 A(C
同样;如果 A(B, B(C ,那么 A(C
⑤ 如果A(B 同时 B(A 那么A=B
四 例题: P8 例一,例二 (略) 练习 P9
补充例题 《课课练》 课时2 P3
五 小结:子集、真子集的概念,等集的概念及其符号
几个性质: A(A
A(B, B(C (A(C
A(B B(A( A=B
作业:P10 习题1.2 1,2,3 《课课练》 课时中选择
第四教时
教材:全集与补集
目的:要求学生掌握全集与补集的概念及其表示法
过程:
一 复习:子集的概念及有关符号与性质。
提问(板演):用列举法表示集合:A={6的正约数},B={10的正约数},C={6与10的正公约数},并用适当的符号表示它们之间的关系。
解: A=(1,2,3,6}, B={1,2,5,10}, C={1,2}
C(A,C(B
二 补集
实例:S是全班同学的集合,集合A是班上所有参加校运会同学的集合,集合B是班上所有没有参加校运动会同学的集合。
集合B是集合S中除去集合A之后余下来的集合。
结论:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: CsA 即 CsA ={x ( x(S且 x(A}
2、例:S={1,2,3,4,5,6} A={1,3,5} CsA ={2,4,6}
三 全集
定义: 如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
如:把实数R看作全集U, 则有理数集Q的补集CUQ是全体无理数的集合。
四 练习:P10(略)
五 处理 《课课练》课时3 子集、全集、补集 (二)
六 小结:全集、补集
七 作业 P10 4,5
《课课练》课时3 余下练习
第五教时
教材: 子集,补集,全集
目的: 复习子集、补集与全集,要求学生对上述概念的认识更清楚,并能较好地处理有关问题。
过程:
一、复习:子集、补集与全集的概念,符号
二、辨析: 1。补集必定是全集的子集,但未必是真子集。什么时候是真子集?
2。A(B 如果把B看成全集,则CBA是B的真子集吗?什么时候(什么条件下)CBA是B的真子集?
三、处理苏大《教学与测试》第二、第三课
作业为余下部分选
第六教时
教材: 交集与并集(1)
目的: 通过实例及图形让学生理解交集与并集的概念及有关性质。
过程:
复习:子集、补集与全集的概念及其表示方法
提问(板演):U={x|0≤x<6,x(Z} A={1,3,5} B={1,4}
求:CuA= {0,2,4}。 CuB= {0,2,3,5}。
新授:
1、实例: A={a,b,c,d} B={a,b,e,f}
图
公共部分 A∩B 合并在一起 A∪B
2、定义: 交集: A∩B ={x|x(A且x(B} 符号、读法
并集: A∪B ={x|x(A或x(B}
见课本P10--11 定义 (略)
3、例题:课本P11例一至例五
练习P12
补充: 例一、设A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7} 且A∩B=C求x,y。
解:由A∩B=C知 7(A ∴必然 x2-x+1=7 得
x1=-2, x2=3
由x=-2 得 x+4=2(C ∴x(-2
∴x=3 x+4=7(C 此时 2y=-1 ∴y=-
∴x=3 , y=-
例二、已知A={x|2x2=sx-r}, B={x|6x2+(s+2)x+r=0} 且 A∩B={ }求A∪B。
解:
∵ (A且 (B ∴
解之得 s= (2 r= (
∴A={ ( } B={ ( }
∴A∪B={ ( ,( }
三、小结: 交集、并集的定义
四、作业:课本 P13习题1、3 1--5
补充:设集合A = {x | (4≤x≤2}, B = {x | (1≤x≤3}, C = {x |x≤0或x≥ },
求A∩B∩C, A∪B∪C。
《课课练》 P 6--7 “基础训练题”及“ 例题推荐”
第七教时
教材:交集与并集(2)
目的:通过复习及对交集与并集性质的剖析,使学生对概念有更深刻的理解
过程:一、复习:交集、并集的定义、符号
提问(板演):(P13 例8 )
设全集 U = {1,2,3,4,5,6,7,8},A = {3,4,5} B = {4,7,8}
求:(CU A)∩(CU B), (CU A)∪(CU B), CU(A∪B), CU (A∩B)
解:CU A = {1,2,6,7,8} CU B = {1,2,3,5,6}
(CU A)∩(CU B) = {1,2,6}
(CU A)∪(CU B) = {1,2,3,5,6,7,8}
A∪B = {3,4,5,7,8} A∩B = {4}
∴ CU (A∪B) = {1,2,6}
CU (A∩B) = {1,2,3,5,6,7,8,}
结合图 说明:我们有一个公式:
(CUA)∩( CU B) = CU(A∪B)
(CUA)∪( CUB) = CU(A∩B)
二、另外几个性质:A∩A = A, A∩φ= φ, A∩B = B∩A,
A∪A = A, A∪φ= A , A∪B = B∪A.
(注意与实数性质类比)
例6 ( P12 ) 略
进而讨论 (x,y) 可以看作直线上的点的坐标
A∩B 是两直线交点或二元一次方程组的解
同样设 A = {x | x2(x(6 = 0} B = {x | x2+x(12 = 0}
则 (x2(x(6)(x2+x(12) = 0 的解相当于 A∪B
即: A = {3,(2} B = {(4,3} 则 A∪B = {(4,(2,3}
三、关于奇数集、偶数集的概念 略 见P12
例7 ( P12 ) 略
练习 P13
四、关于集合中元素的个数
规定:集合A 的元素个数记作: card (A)
作图 观察、分析得:
card (A∪B) ( card (A) + card (B)
card (A∪B) = card (A) +card (B) (card (A∩B)
五、(机动):《课课练》 P8 课时5 “基础训练”、“例题推荐”
六、作业: 课本 P14 6、7、8
《课课练》 P8—9 课时5中选部分
第八教时
教材:交集与并集(3)
目的:复习交集与并集,并处理“教学与测试”内容,使学生逐步达到熟练技巧。
过程:
一、复习:交集、并集
二、1.如图(1) U是全集,A,B是U的两个子集,图中有四个用数字标出的区域,试填下表:
区域号 相应的集合 1 CUA∩CUB 2 A∩CUB 3 A∩B 4 CUA∩B 集合 相应的区域号 A 2,3 B 3,4 U 1,2,3,4 A∩B 3
图(1)
图(2)
2、如图(2) U是全集,A,B,C是U的三个子集,图中有8个用数字标
出的区域,试填下表: (见右半版)
3、已知:A={(x,y)|y=x2+1,x(R} B={(x,y)| y=x+1,x(R }求A∩B。
解:
∴ A∩B= {(0,1),(1,2)}
区域号 相应的集合 1 CUA∩CUB∩CUC 2 A∩CUB∩CUC 3 A∩B∩CUC 4 CUA∩B∩CUC 5 A∩CUB∩C 6 A∩B∩C 7 CUA∩B∩C 8 CUA∩CUB∩C 集合 相应的区域号 A 2,3,5,6 B 3,4,6,7 C 5,6,7,8 ∪ 1,2,3,4,5,6,7,8 A∪B 2,3,4,5,6,7 A∪C 2,3,5,6,7,8 B∪C 3,4,5,6,7,8 三、《教学与测试》P7-P8 (第四课) P9-P10 (第五课)中例题
如有时间多余,则处理练习题中选择题
四、作业: 上述两课练习题中余下部分
第九教时
(可以考虑分两个教时授完)
教材: 单元小结,综合练习
目的: 小结、复习整单元的内容,使学生对有关的知识有全面系统的理解。
过程:
一、复习:
1、基本概念:集合的定义、元素、集合的分类、表示法、常见数集
2、含同类元素的集合间的包含关系:子集、等集、真子集
3、集合与集合间的运算关系:全集与补集、交集、并集
二、苏大《教学与测试》第6课 习题课(1)其中“基础训练”、例题
三、补充:(以下选部分作例题,部分作课外作业)
1、用适当的符号((,(, , ,=,()填空:
0 ( (; 0 ( N; ( {0}; 2 ( {x|x(2=0};
{x|x2-5x+6=0} = {2,3}; (0,1) ( {(x,y)|y=x+1};
{x|x=4k,k(Z} {y|y=2n,n(Z}; {x|x=3k,k(Z} ( {x|x=2k,k(Z};
{x|x=a2-4a,a(R} {y|y=b2+2b,b(R}
2、用适当的方法表示下列集合,然后说出其是有限集还是无限集。
① 由所有非负奇数组成的集合; {x=|x=2n+1,n(N} 无限集
② 由所有小于20的奇质数组成的集合; {3,5,7,11,13,17,19} 有限集
③ 平面直角坐标系内第二象限的点组成的集合; {(x,y)|x<0,y>0} 无限集
④ 方程x2-x+1=0的实根组成的集合; ( 有限集
⑤ 所有周长等于10cm的三角形组成的集合;
{x|x为周长等于10cm的三角形} 无限集
3、已知集合A={x,x2,y2-1}, B={0,|x|,y} 且 A=B求x,y。
解:由A=B且0(B知 0(A
若x2=0则x=0且|x|=0 不合元素互异性,应舍去
若x=0 则x2=0且|x|=0 也不合
∴必有y2-1=0 得y=1或y=-1
若y=1 则必然有1(A, 若x=1则x2=1 |x|=1同样不合,应舍去
若y=-1则-1(A 只能 x=-1这时 x2=1,|x|=1 A={-1,1,0} B={0,1,-1}
即 A=B
综上所述: x=-1, y=-1
4、求满足{1} A({1,2,3,4,5}的所有集合A。
解:由题设:二元集A有 {1,2}、{1,3}、{1,4}、{1,5}
三元集A有 {1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5}
四元集A有 {1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,3,4,5}
五元集A有 {1,2,3,4,5}
5、设U={
m、n(Z}, B={x|x=4k,k(Z} 求证:1。 8(A 2。 A=B
证:1。若12m+28n=8 则m= 当n=3l或n=3l+1(l(Z)时
m均不为整数 当n=3l+2(l(Z)时 m=-7l-4也为整数
不妨设 l=-1则 m=3,n=-1 ∵8=12×3+28×(-1) 且 3(Z -1(Z
∴8(A
2。任取x1(A 即x1=12m+28n (m,n(Z)
由12m+28n=4=4(3m+7n) 且3m+7n(Z 而B={x|x=4k,k(Z}
∴12m+28n(B 即x1(B 于是A(B
任取x2(B 即x2=4k, k(Z
由4k=12×(-2)+28k 且 -2k(Z 而A={x|x=12m+28n,m,m(Z}
∴4k(A 即x2(A 于是 B(A
综上:A=B
7、设 A∩B={3}, (CuA)∩B={4,6,8}, A∩(CuB)={1,5}, (CuA)∪(CuB)
={x(N|x<10且x(3} , 求Cu(A∪B), A, B。
解一: (CuA)∪(CuB) =Cu(A∩B)={x(N|x<10且x(3} 又:A∩B={3}
U=(A∩B)∪Cu(A∩B)={ x(N|x<10}={1,2,3,4,5,6,7,8,9}
A∪B中的元素可分为三类:一类属于A不属于B;一类属于B不属于A;一类既属A又属于B
由(CuA)∩B={4,6,8} 即4,6,8属于B不属于A
由(CuB)∩A={1,5} 即 1,5 属于A不属于B
由A∩B ={3} 即 3 既属于A又属于B
∴A∪B ={1,3,4,5,6,8}
∴Cu(A∪B)={2,7,9}
A中的元素可分为两类:一类是属于A不属于B,另一类既属于A又属于B
∴A={1,3,5}
同理 B={3,4,6,8}
解二 (韦恩图法) 略
8、设A={x|(3≤x≤a}, B={y|y=3x+10,x(A}, C={z|z=5(x,x(A}且B∩C=C求实数a的取值。
解:由A={x|(3≤x≤a} 必有a≥(3 由(3≤x≤a知
3×((3)+10≤3x+10≤3a+10
故 1≤3x+10≤3a+10 于是 B={y|y=3x+10,x(A}={y|1≤y≤3a+10}
又 (3≤x≤a ∴(a≤(x≤3 5(a≤5(x≤8
∴C={z|z=5(x,x(A}={z|5(a≤z≤8}
由B∩C=C知 C(B 由数轴分析: 且 a≥(3
( ( ≤a≤4 且都适合a≥(3
综上所得:a的取值范围{a|( ≤a≤4 }
9、设集合A={x(R|x2+6x=0},B={ x(R|x2+3(a+1)x+a2(1=0}且A∪B=A求实数a的取值。
解:A={x(R|x2+6x=0}={0,(6} 由A∪B=A 知 B(A
当B=A时 B={0,(6} ( a=1 此时 B={x(R|x2+6x=0}=A
当B A时
1。若 B(( 则 B={0}或 B={(6}
由 (=[3(a+1)]2(4(a2(1)=0 即5a2+18a+13=0 解得a=(1或 a=(
当a=(1时 x2=0 ∴B={0} 满足B A
当a=( 时 方程为 x1=x2=
∴B={ } 则 B(A(故不合,舍去)
2。若B=( 即 ((0 由 (=5a2+18a+13(0 解得( (a((1
此时 B=( 也满足B A
综上: ( (a≤(1或 a=1
10、方程x2(ax+b=0的两实根为m,n,方程x2(bx+c=0的两实根为p,q,其中m、n、p、q互不相等,集合A={m,n,p,q},作集合S={x|x=(+(,((A,((A且(((},P={x|x=((,((A,((A且(((},若已知S={1,2,5,6,9,10},P={(7,(3,(2,6,
14,21}求a,b,c的值。
解:由根与系数的关系知:m+n=a mn=b p+q=b pq=c
又: mn(P p+q(S 即 b(P且 b(S
∴ b(P∩S 又由已知得 S∩P={1,2,5,6,9,10}∩{(7,(3,(2,6,14,21}={6}
∴b=6
又:S的元素是m+n,m+p,m+q,n+p,n+q,p+q其和为
3(m+n+p+q)=1+2+5+6+9+10=33 ∴m+n+p+q=11 即 a+b=11
由 b=6得 a=5
又:P的元素是mn,mp,mq,np,nq,pq其和为
mn+mp+mq+np+nq+pq=mn+(m+n)(p+q)+pq=(7(3(2+6+14+21=29
且 mn=b m+n=a p+q=b pq=c
即 b+ab+c=29 再把b=6 , a=5 代入即得 c=(7
∴a=5, b=6, c=(7
四、作业:《教学与测试》余下部分及补充题余下部分
第十一教时
教材:含绝对值不等式的解法
目的:从绝对值的意义出发,掌握形如 | x | = a的方程和形如 | x | > a, | x | < a (a>0)不等式的解法,并了解数形结合、分类讨论的思想。
过程:
一、实例导入,提出课题
实例:课本 P14(略) 得出两种表示方法:
1、不等式组表示: 2.绝对值不等式表示::| x ( 500 | ≤5
课题:含绝对值不等式解法
二、形如 | x | = a (a≥0) 的方程解法
复习绝对值意义:| a | =
几何意义:数轴上表示 a 的点到原点的距离
。 例:| x | = 2 。
三、形如| x | > a与 | x | < a 的不等式的解法
例 | x | > 2与 | x | < 2
1(从数轴上,绝对值的几何意义出发分析、作图。解之、见 P15 略
结论:不等式 | x | > a 的解集是 { x | (a< x < a}
| x | < a 的解集是 { x | x > a 或 x < (a}
2(从另一个角度出发:用讨论法打开绝对值号
| x | < 2 或 ( 0 ≤ x < 2或(2 < x < 0
合并为 { x | (2 < x < 2}
同理 | x | < 2 或 ( { x | x > 2或 x < (2}
3(例题 P15 例一、例二 略
4(《课课练》 P12 “例题推荐”
四、小结:含绝对值不等式的两种解法。
五、作业: P16 练习 及习题1.4
第十二教时
教材:一元二次不等式解法
目的:从一元二次方程、一元二次不等式与二次函数的关系出发,掌握运用二次函数求解一元二次不等式的方法。
过程 :
一、课题:一元二次不等式的解法
先回忆一下初中学过的一元一次不等式的解法:如 2x(7>0 x>
这里利用不等式的性质解题
从另一个角度考虑:令 y=2x(7 作一次函数图象:
引导观察,并列表,见 P17 略
当 x=3.5 时, y=0 即 2x(7=0
当 x<3.5 时, y<0 即 2x(7<0
当 x>3.5 时, y>0 即 2x(7>0
结论:略 见P17
注意强调:1(直线与 x轴的交点x0是方程 ax+b=0的解
2(当 a>0 时, ax+b>0的解集为 {x | x > x0 }
当 a<0 时, ax+b<0可化为 (ax(b<0来解
二、一元二次不等式的解法
同样用图象来解,实例:y=x2(x(6 作图、列表、观察
当 x=(2 或 x=3 时, y=0 即 x2(x(6=0
当 x<(2 或 x>3 时, y>0 即 x2(x(6>0
当 (2
∴方程 x2(x(6=0 的解集:{ x | x = (2或 x = 3 }
不等式 x2(x(6 > 0 的解集:{ x | x < (2或 x > 3 }
不等式 x2(x(6 < 0 的解集:{ x | (2 < x < 3 }
这是 △>0 的情况:
若 △=0 , △<0 分别作图观察讨论
得出结论:见 P18--19
说明:上述结论是一元二次不等式 ax+bx+c>0(<0) 当 a>0时的情况
若 a<0, 一般可先把二次项系数化成正数再求解
三、例题 P19 例一至例四
练习:(板演)
有时间多余,则处理《课课练》P14 “例题推荐”
四、小结:一元二次不等式解法(务必联系图象法)
五、作业:P21 习题 1.5
《课课练》第8课余下部分
第十三教时
教材:一元二次不等式解法(续)
目的:要求学生学会将一元二次不等式转化为一元二次不等式组求解的方法,进而学会简单分式不等式的解法。
过程:
一、复习:(板演)
一元二次不等式 ax2+bx+c>0与 ax2+bx+c<0 的解法
(分 △>0, △=0, △<0 三种情况)
1.2x4(x2(1≥0 2.1≤x2(2x<3 (《课课练》 P15 第8题中)
解:1.2x4(x2(1≥0 (2x2+1)(x2(1)≥0 x2≥1
x≤(1 或 x≥1
2.1≤x2(2x<3
(1
二、新授:
1、讨论课本中问题:(x+4)(x(1)<0
等价于(x+4)与(x(1)异号,即: 与
解之得:(4 < x < 1 与 无解
∴原不等式的解集是:{ x | }∪{ x | }
={ x | (4 < x < 1 }∪φ= { x | (4 < x < 1 }
同理:(x+4)(x(1)>0 的解集是:{ x | }∪{ x | }
2、提出问题:形如 的简单分式不等式的解法:
同样可转化为一元二次不等式组 { x | }∪{ x | }
也可转化(略)
注意:1(实际上 (x+a)(x+b)>0(<0) 可考虑两根 (a与 (b,利用法则求解:但此时必须注意 x 的系数为正。
2(简单分式不等式也同样要注意的是分母不能0(如 时)
3(形如 的分式不等式,可先通分,然后用上述方法求解
3、例五:P21 略
4、练习 P21 口答板演
三、如若有时间多余,处理《课课练》P16--17 “例题推荐”
四、小结:突出“转化”
五、作业:P22 习题1.5 2--8 及《课课练》第9课中挑选部分
第十四教时
教材: 苏大《教学与测试》P13-16第七、第八课
目的: 通过教学复习含绝对值不等式与一元二次不等式的解法,逐步形成教熟练的技巧。
过程:
一、复习:1. 含绝对值不等式式的解法:(1)利用法则;
(2)讨论,打开绝对值符号
2、一元二次不等式的解法:利用法则(图形法)
二、处理苏大《教学与测试》第七课 — 含绝对值的不等式
《课课练》P13 第10题:
设A= B={x|2≤x≤3a+1}是否存在实数a的值,分别使得:(1) A∩B=A (2)A∪B=A
解:∵ ∴ 2a≤x≤a2+1
∴ A={x|2a≤x≤a2+1}
(1) 若A∩B=A 则A(B ∴ 2≤2a≤a2+1≤3a+1 1≤a≤3
(2) 若A∪B=A 则B(A
∴当B=?时 2>3a+1 a<
当B(?时 2a≤2≤3a+1≤a2+1 无解
∴ a<
三、处理《教学与测试》第八课 — 一元二次不等式的解法
《课课练》 P19 “例题推荐” 3
关于x的不等式 对一切实数x恒成立, 求实数k的取值范围。
解:∵ x2(x+3>0恒成立 ∴ 原不等式可转化为不等式组:
由题意上述两不等式解集为实数
∴
即为所求。
四、作业:《教学与测试》第七、第八课中余下部分。
第十五教时
教材:二次函数的图形与性质(含最值);
苏大《教学与测试》第9课、《课课练》第十课。
目的: 复习二次函数的图形与性质,期望学生对二次函数y=ax2+bx+c的三个参数a,b,c的作用及对称轴、顶点、开口方向和 △ 有更清楚的认识;同时对闭区间内的二次函数最值有所了解、掌握。
过程:
一、复习二次函数的图形及其性质 y=ax2+bx+c (a(0)
1、配方 顶点,对称轴
2、交点:与y轴交点(0,c)
与x轴交点(x1,0)(x2,0)
求根公式
3、开口
4、增减情况(单调性) 5.△的定义
二、图形与性质的作用 处理苏大《教学与测试》第九课
例题:《教学与测试》P17-18例一至例三 略
三、关于闭区间内二次函数的最值问题
结合图形讲解: 突出如下几点:
1、必须是“闭区间” a1≤x≤a2
2、关键是“顶点”是否在给定的区间内;
3、次之,还必须结合抛物线的开口方向,“顶点”在区间中点的左侧还是右侧综合判断。
处理《课课练》 P20“例题推荐”中例一至例三 略
四、小结:1。 调二次函数y=ax2+bx+c (a(0) 中三个“参数”的地位与作用。我们实际上就是利用这一点来处理解决问题。
2。 于二次函数在闭区间上的最值问题应注意顶点的位置。
五、作业: 《课课练》中 P21 6、7、8
《教学与测试》 P18 5、6、7、8 及“思考题”
第十六教时
教材: 一元二次方程根的分布
目的: 介绍符号“f(x)”,并要求学生理解一元二次方程ax2+bx+c=0 (a(0)的根的分布与系数a,b,c之间的关系,并能处理有关问题。
过程:
一、为了本课教学内容的需要与方便,先介绍函数符号“f(x)”。 如:二次函数记作f(x)= ax2+bx+c (a(0)
控制”一元二次方程根的分布。
例三 已知关于x的方程x2(2tx+t2(1=0的两个实根介于(2和4之间,求实数t的取值。
解:
此题既利用了函数值,还利用了 及顶点坐标来解题。
三、作业题(补充)
1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。(a<1)
2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。 (a<(3)
3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。
(m>7)
4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。
(a>2)
(注:上述题目当堂巩固使用)
5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。 ((m+2)2+(n+2)2<4)
6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。 (k<(4 或 k>0)
7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0
8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。 (2
9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。 ((9/40≤m<1)
10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。
解:如果在(1≤x≤1上有两个解,则
如果有一个解,则f(1)?f((1)≤0 得 m≤(5 或 m≥5
(附:作业补充题)
作 业 题(补充)
1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。
2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。
3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。
4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。
(注:上述题目当堂巩固使用)
5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。
6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。
7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0
8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于<>0,另一根大于2,求实数a的取值范围。
9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。
10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。
作 业 题(补充)
1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。
2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。
3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。
4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。
(注:上述题目当堂巩固使用)
5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。
6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。
7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0
8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。
9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。
10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。
第十七教时
教材: 绝对值不等式与一元二次不等式练习课
活动目标:
1、手口一致进行6以内点数,说出总数。
2、运动感知数量(6以内),并对数数感兴趣。
活动准备:
1、画有1—6只不等的蚊子图片若干。
2、贴有1—6个点的不等的图片的盒子6个。
活动过程:
一、念儿歌:蚊子是个坏东西,传染疾病真可恶。小朋友们本领大,看见蚊子拍死它。看撒落在地上的蚊子图片,玩拍蚊子的游戏:图片上有1个蚊子拍一下,图片一有2个蚊子拍二下……图片上有几个蚊子就拍几下,表示你把它们拍死啦!捡起图片,再去拍别的图片上的蚊子。
二、集体拍蚊子:在自己图片上找出有3个蚊子的`放地上,做出拍三下的动作,送入贴着相应圆点卡的盒子里。图片上有2个蚊子的放地上,做出拍两下的动作,送入贴着相应圆点卡的盒子里。把手里还有的蚊子图片分别送入有相应点子卡的盒子里。
三、念儿歌:蚊子是个坏东西,传染疾病真可恶,小朋友本领大,看见蚊子拍死它,小朋友拍手笑,蚊子全部死光光。
一。教学目标:
1、知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集。
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用。
2、过程与方法
学生通过观察和类比,借助Venn图理解集合的基本运算。
3、情感。态度与价值观
(1)进一步树立数形结合的思想。
(2)进一步体会类比的作用。
(3)感受集合作为一种语言,在表示数学内容时的简洁和准确。
二。教学重点。难点
重点:交集与并集,全集与补集的概念。
难点:理解交集与并集的概念。符号之间的区别与联系.
三。学法与教学用具
1、学法:学生借助Venn图,通过观察。类比。思考。交流和讨论等,理解集合的基本运算。
2、教学用具:投影仪。
四。教学思路
(一)创设情景,揭示课题
问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?
请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?
引导学生通过观察,类比。思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知
l.并集
—般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
记作:A∪B.
读作:A并B.
其含义用符号表示为:
用Venn图表示如下:
请同学们用并集运算符号表示问题1中A,B,C三者之间的关系。
练习。检查和反馈
(1)设A={4,5,6,8),B={3,5,7,8),求A∪B.
(2)设集合
让学生独立完成后,教师通过检查,进行反馈,并强调:
(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次。
(2)对于表示不等式解集的集合的运算,可借助数轴解题。
2、交集
(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A.B与集合C之间有什么关系?
②B={|是新华中学2004年9月入学的高一年级同学},C={|是新华中学2004年9月入学的高一年级女同学}。
教师组织学生思考。讨论和交流,得出结论,从而得出交集的定义;
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集。
记作:A∩B.
读作:A交B
其含义用符号表示为:
接着教师要求学生用Venn图表示交集运算。
(2)练习。检查和反馈
①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系。
②学校里开运动会,设A={|是参加一百米跑的同学},B={|是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义。
学生独立练习,教师检查,作个别指导。并对学生中存在的问题进行反馈和纠正。
(三)学生自主学习,阅读理解
1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:
(1)什么叫全集?
(2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?
(3)已知集合。
(4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求。
在学生阅读。思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价。
(四)归纳整理,整体认识
1.通过对集合的学习,同学对集合这种语言有什么感受?
2.并集。交集和补集这三种集合运算有什么区别?
(五)作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集。交集和补集的现实含义。
3.书面作业:教材第12页习题1.1A组第7题和B组第4题。
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表
数学
小明丁旭小小小强小兵小东张伟赵军
作文
小平刘红小东于丽小史陶伟小小卢强小光
(1)提问:参加数学课外小组的学生有几人?参加作文课外小组的学生有几人?参加数学、作文课外小组的学生共有多少人?(学生意见不统一,请学生说说理由)
师:能不能设计一幅图,把学生的姓名写在合适的位置,让我们能一眼就看出参加数学的、参加作文的和两个项目都参加的有哪些同学呢?
(2)学生小组合作,自主绘图。教师巡视指导。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
【板书设计】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
活动目标:
1、通过排序活动,感受排序的活动美。
2、能用语言讲述排序规律。
3、尝试通过自己的排序活动,体验操作乐趣。
活动重点:
让幼儿在观察游戏操作的基础上了解排序活动,并体验排序的活动形式美。
活动难点:
引导幼儿自选某种规律排序物体。
活动准备:
1、三列长火车,每节可坐三个小动物。
2、小动物卡片若干,葫芦卡片若干。
3、进入森林的小脚丫线路图。
4、幼儿操作材料。
活动过程:
一、情景导入,激发幼儿的学习兴趣。
1、教师与幼儿谈话,进入角色。
教师:"大班的小朋友真听话,今天老师要带你们去打森林里去看一看,听说那的小动物今天要去旅行,我们去看一看有哪些小动物,好吗?"
2、出示小脚丫线路图,教师示范走,并引导幼儿观察其中规律。
二、分别出示三列火车,引导幼儿观察。
1、出示第一辆火车头,及第一节车厢(ABB)
(1)教师引导幼儿观察车厢小动物的位置。
(2)教师出示第二节车厢,让幼儿观察并了解规律。
(3)出示第三节车厢方法同上。
(4)出示第四节车厢,让幼儿猜是那些小动物。
教师小结:原来小动物们是按一定顺序坐火车的,你们觉得这样漂亮吗?这种排列的顺序叫有规律的'排序,你们知道了吧!
2、出示第二列火车头及第一节车厢(ABB)
(1)教师引导幼儿观察小动物座位。
(2)教师出示第2、3、4节车厢让幼儿上来操作,教师及时指导。
3、出示第三列火车头及第一节车厢(AAB)
(1)引导幼儿观察小动物的位置。
(2)教师出示第2、3节车厢,让幼儿上来操作,教师及时指导。
三、出示葫芦卡片,让幼儿接着排列。
1、教师引导幼儿观察,并操作。
2、提问:这些葫芦哪些不一样(颜色、大小)
教师小结:其实生活中的规律很多,他们可以按大小来分,也可以按颜色来分。还可以按高矮来分等等;这要我们认真观察,就能看出其中规律。
四、游戏:送礼物。
1、教师:小朋友,今天表现的很棒,老师想送礼物给孩子们,如果谁把你们手中的图形宝宝,按照一定的规律排好队,这些图形宝宝就是你们的了。
2、幼儿自由操作,教师巡回指导。
五、结束部分。
教师:其实在我们幼儿园里还有许多有规律的排序,我们一起出去找一找吧。
一、教学目标
1、知识与技能:
(1)理解并集和交集的含义,会求两个简单集合的交集与并集
(2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用
2、过程与方法
(1)进一步体会类比的作用
(2)进一步树立数形结合的思想
3、情感态度与价值观
集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。
二、教学重点与难点
教学重点:并集与交集的含义
教学难点:理解并集与交集的概念,符号之间的区别与联系
三、教学过程
1、创设情境
(1)通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。
(2)用Venn图表示(阴影部分)
2、探究新知
(1)通过Venn图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A和集合B的并集。
记作:AB,读作:A并B,其含义用符号表示为:
(2)解剖分析:
1、所有:不能认为AB是由A的所有元素和B的所有元素组成的。集合,即简单平凑,要满足集合的互异性,相同的元素即A和B的公共元素只能算作并集中的一个元素
2、或:这一条件,包括下列三种情况:
3、用Venn图表示AB:
(3)完成教材P8的例4和例5(例4是较为简单的不用动笔,同学直接口答即可;例5必须动笔计算的,并且还要通过数轴辅助解决,充分体现了数形结合的思想。)
(4)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?(具体画出A与B相交的Venn图)
(5)交集的含义:一般地,由属于集合A和集合B的所有元素组成的集合,称为A与B的交集,记作:AB,读作:A交B,其含义用符号表示为
(6)解剖分析:
1、且
2、用Venn图表示AB:
(7)完成教材P9的例6(口述)
(8)(运用数轴,答案为)
3、巩固练习
(1)教材P9的例7
(2)教材P11#1#2
4、小结作业:
(1)小结:
1、并集和交集的含义及其符号表示
2、并集与交集的区别(符号等)
(2)作业:
活动目标:
1、通过找颜色或形状相同的物体,初步感知集合。
2、观察、理解图示,学习将相同特性物品圈在一起的方式表示集合。
活动准备:
1、红、蓝色色小筐各一个。
2、红、蓝小玩具每幼儿各一个(大小、形状不相同)、红、蓝颜色的积塑每人一颗(大小、形状不相同)。
活动过程:
一、将花按颜色进行分类。
1、教师出示红、蓝色的玩具;这是什么?是什么颜色?
2、请幼儿每人拿一个玩具,要求幼儿大声说:我拿了一个红(绿)玩具,然后回位子上。
3、出示红、蓝两种颜色的筐子:这是玩具的“家”,它们有什么不同?(颜色) “想一想哪个是红玩具的家?哪个是蓝玩具的家?”(红筐是红玩具的家、蓝筐是蓝玩具的家)“小朋友看看你拿的是什么颜色的玩具,想想把它送到哪个家里去?边送边大声说:红(蓝)玩具,我送你回家。
二、将积塑按形状分类。
1、出示积塑;这是什么?是什么形状的?(红、蓝颜色的积塑) 请幼儿每人拿一颗积塑,并大声说:红、蓝积塑,我和你做好朋友。
2、出示红、绿两种形状的筐子。
积塑要回家了,请小朋友看看自己手上的'积塑的形状,想想应该把它送到哪个家。要求幼儿边送边说:红、蓝积塑我送你回家。
三、比较两个筐里的物体。
出示红、蓝两个筐:这是什么形状的筐?住着谁?为什么它们能住在一起?(因为形状相同。)
四、幼儿做练习册,教师个别指导。东营区实验幼儿园李真
一、教材分析
集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。
根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:
二、教学目标
1,知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集
的表示法以及求解两个集合并集与交集的方法。
2,过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。
3,情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。
根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点,
三,教学重点与难点
重点:并集与交集的概念的理解,以及并集与交集的求解。
难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。
为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;
四、教学方法与学法
本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。
那么在本节课中我的教学过程是这样设计的,
五、教学过程
1复习旧知、引入主题
问题1、实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?
由此引入了本节课的课;集合的基本运算,并让学生观察这样三个集合
集合A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}并让学生思考集合A、集合B并与集合C之间有什么关系?
通过对以上集合的观察、比较、分析、学生容易得出集合C里面的元素由集合A或B里边得元素组成,像这样的关系我们把它叫做并集,得出并集的概念后我会引导学生发现并集里边的关键词“或”字,(为了使学生加深对“或”字的理解,我会举出生活中的例子,书记或主任去开会,这里有三层意思:(1)书记去开会,(2)主任去开会,(3)书记和主任都去开会类比这个例子让学生自己归纳出并集中“或”的三层意思)
引入并集的符号“”,并用数学语言描述A与B的并集:或}介绍Veen图
通过对书上例4的讲解,让学生了解当求解并集时出现相同的元素我们只能算一次,这是由集合的互易性确定的,由此复习了集合的互易性,
再对例5的讲解,让学生会用数轴来求解并集,
学生学习了并集含义之后,我会让学生思考这样一个问题,
问题2:除了并集之外,集合还有其他的运算吗?并让他们观以下的集合:
A={1,2,3}B={3,,4,5}C={3}让学生类比并集的方式归纳出它们之间的关系:集合C里面的元素在集合A且在集合B里面,像这样的关系我们把它叫做交集,
引导学生发现交集里面的关键词“且”,介绍交集的符号“”用数学语言表示交集:且};介绍Veen图
对书上例6的讲解让学生了解集合与我们的生活息息相关,从而激发他们学习是学的兴趣,并学会用自然语言来描述两个集合的交集,
例7:让学生了解当两条直线没有交点即两个集合没有公共部分的时候,他们的交集不是不存在,而是他们的交集为空集,由此复习了空集的概念,
让学生完成书上的练习,
1、课堂练习,反馈信息。(P11,1、2题)
在以上的环节中,老师只起了引导的作用,而学生是主体,充分的调动学生的积极性与主动性,让学生的学习过程在老师的引导下的知识在创造。
2、课堂小结,自我评价。
通过提问,引导学生对所学的知识、思想方法进行小结,形成知识系统,用激励性的语言加以点评,让学生思想尽量发挥完善。
3、作业布置,反馈矫正。(P12,6、7)
活动目标
1.通过参与愉悦的游戏情节,充分体验学习数学的乐趣,从而激发幼儿的探索欲望。
2.发展观察力、记忆力和初步的归类能力。
3.巩固圆形、三角形、正方形主要特征的掌握,能排除大小、颜色的干扰进行图形分类。
活动准备
1.ppt课件:图形宝宝回家
2.学具准备:圆形、方形、三角形卡片若干。
活动过程
一、导入
以到图形王国去参观的口吻,引起幼儿的兴趣,感知大众图形的特征,为图形分类做好铺垫。
教师:今天老师带领你们到图形王国里去参观,进图形王国要受门票,你们胸前都有一张图形门票,知道自己的门票是什么形状的吗?
提问幼儿:你的门票是什么形状的?
二、展开
1.引导幼儿按图形的形状入口,初步感知图形。
教师介绍图形王国的三种形状的入口,要求幼儿按自己门票的形状,走与自己门票相同形状的入口。
比如:有圆形门票的小朋友走圆形入口。依次组织幼儿入场。
2.复习三种图形的外形特征
(1)引出三种图形的名称。
提问:你是从哪个入口进来的?为什么?
分别提问三名门票形状不同的幼儿,从而引出图形的名称。
教师:圆形、正方形、三角形是我们已经认识的图形朋友,你们还记得它们长得什么样子吗?
(2)播放课件,引导幼儿回顾三种图形的外形特征。
提问:圆形长的什么样子?正方形长的什么样子?三角形长的什么样子?
教师:图形妈妈还有图形宝宝,宝宝很顽皮,喜欢跟妈妈做捉谜藏的游戏。
3.幼儿操作,学习图形分类:
(1)圆形分类:
出示圆形脸谱
提问问:圆形妈妈的宝宝是谁?
引导幼儿每人找一个圆形,观察不同点,从而理解,
虽然大小不同,但是形状相同,所以他们分在一起。
教师再利用两个颜色不同的圆形,
虽然颜色不同,但是形状相同,所以,他们分在一起。
小结归纳:所有长的圆圆的,周围很光滑,没有角的图形都是圆形妈妈的宝宝,
(2)依同样方法进行正方形、三角形分类。
三、结束
小朋友,图形王国的开放时间已经到了,我们一起听着音乐,开着小汽车,从出口回家吧!