高中数学教案5篇

作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?这里给大家分享一些关于高中数学教案模板范文,方便大家学习。读书破万卷,下笔如有神,以下是漂亮的编辑帮助大家分享的高中数学教案5篇,欢迎借鉴。

高中数学教案设计范例 篇1

1、课题

填写课题名称(高中代数类课题)

2、教学目标

(1)知识与技能:

通过本节课的学习,掌握。.。.。.知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过。.。.。.(讨论、发现、探究),提高。.。.。.(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3、教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4、教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5、教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

关于高中的数学教学设计 篇2

一、指导思想

高三数学教学要以《全日制普通高级中学教科书》、普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。要坚持以人为本,强化质量的意识,务实规范求创新,科学合作求发展。

二、教学建议

1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。

《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。

注意高考的导向:注重能力考查,反对“题海战术”。《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。

2、充分调动学生学习积极性,增强学生学习的自信心。

尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。

3、注重学法指导,提高学生学习效率。

教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。

4、高度重视基础知识、基本技能和基本方法的复习。

要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。为此教师要了解学生,准确定位。精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的训练。

5、教学中要重视思维过程的展现,注重学生能力的发展。

在教学中我们发现学生不太喜欢分析问题,被动的等待老师的答案的现象很普遍,因此,教学中教师要深入研究,挖掘知识背后的智力因素,创设环境,给学生思考、交流的机会,充分发挥学生的主体作用,使学生在比较、辨析、质疑的过程中认识知识的内在联系,形成分析问题、解决问题的能力。养成他们动口、动脑、动手的习惯。

6、高中的“重点知识”在复习中要保持较大的比重和必要的深度。

近年来数学试题的突出特点:坚持重点内容重点考查,使高考保持一定的稳定性;在知识网络交汇点处命制试题。因此在函数、不等式、数列、立体几何、三角函数、解析几何、概率等重点内容的复习中,要注意轻重缓急,注重学科的内在联系和知识的综合。

7、重视“通性、通法”的总结和落实。

教师要帮助学生梳理各部分知识中的通性、通法,把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上。通过题目说通法,而不是死记硬背。进而使学生形成一些最基本的数学意识,掌握一些最基本的数学方法,不断地提高解决问题的能力。

8、渗透数学思想方法,培养数学学科能力。

《考试说明》明确指出要考查数学思想方法,要加强学科能力的考查。我们在复习中要加强数学思想方法的复习,如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。切忌空谈思想方法,要以知识为载体,“润物细无声”。

9、建议在每块知识复习前作一次摸底测试,(师、生)做到心中有数。坚持备课组集体备课,把握轻重缓急,避免重复劳动,切忌与学生实际不相符。

总之,我们要加强学习、研究,注重对学生、教材、教法和高考的研究,总结经验和吸取教训,搞好第一轮复习,为第二轮复习打好基础。

高中数学教案 篇3

教学准备

教学目标

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

教学过程

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{com},使得{com}是一个公比为2的等比数列,若能请指出{com}中的第k项是等差数列中的第几项?

(本题为开放题,没有唯一的答案,如对于{com}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{com}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

P129:1,2,3

思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{com},{com}是一个公比为2的等比数列,请指出{com}中的第k项是等差数列中的第几项?

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的高潮,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高中数学教案 篇4

一。说教材

地位及重要性

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;

(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二。说教法

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三。说学法

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四。说过程

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;

求(1)中函数的值。

(用多媒体出示问题,并让学生思考)

通过问题情景的设置主要是为了达到以下两个目的:

⑴第一问为了复习回顾函数的表达式;

数学教案高中教学 篇5

排列

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好 的推导。

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数。

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列。

要特别注意,不加特殊说明,本章不研究重复排列问题。

③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式。对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释。

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

教学设计示例

排列

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

教学重点难点

重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。

难点是解有关排列的应用题。

教学过程设计

一、 复习引入

上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):

1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书。

(1)从中任取1本,有多少种取法?

(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?

2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?

找一同学谈解答并说明怎样思考的的过程

第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法。根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=2000.

第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区。

二、 讲授新课

学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点。先从实例入手:

1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?

由学生设计好方案并回答。

(1)用加法原理设计方案。

首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票。

(2)用乘法原理设计方案。

首先确定起点站,在三个站中,任选一个站为起点站,有3种方法。即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选。那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种。

根据以上分析由学生(板演)写出所有种飞机票

再看一个实例。

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号。如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?

找学生谈自己对这个问题的想法。

事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数。

首先,先确定位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;

其次,确定中间位置的旗子,当位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法。剩下那面旗子,放在最低位置。

根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).

根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况。(包括每个位置情况)

第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来。

由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数。

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).

请板演的学生谈谈怎样想的?

第一步,先确定百位上的数字。在1,2,3,4这四个数字中任取一个,有4种取法。

第二步,确定十位上的数字。当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法。

第三步,确定个位上的数字。当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法。

根据乘法原理,所以共有4×3×2=24种。

下面由教师提问,学生回答下列问题

(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?

都是从一些研究的对象之中取出某些研究的对象。

(2)取出的这些研究对象又做些什么?

实质上按着顺序排成一排,交换不同的位置就是不同的情况。

(3)请大家看书,第×页、第×行。 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素。

上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法。

第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法。

第三个问题呢?

从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法。

给出排列定义

请看课本,第×页,第×行。一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

下面由教师提问,学生回答下列问题

(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?

从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同。两个条件中,只要有一个条件不符合,就是不同的排列。

如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列。

再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列。

(2)还需要搞清楚一个问题,“一个排列”是不是一个数?

生:“一个排列”不应当是一个数,而应当指一件具体的事。如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列。如果问飞机票有多少种?能表示出多少种信号。只问种数,不用把所有情况罗列出来,才是一个数。前面提到的第三个问题,实质上也是这样的。

三、 课堂练习

大家思考,下面的排列问题怎样解?

有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题。

解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱。

第二步从余下的三张卡片中任选符合条件的一张放在第2空箱。

第三步从余下的两张卡片中任选符合条件的一张放在第3空箱。

第四步把最后符合条件的一张放在第四空箱。具体排法,用下面图表表示:

所以,共有9种放法。

四、作业

课本:P232练习1,2,3,4,5,6,7.

一键复制全文保存为WORD
相关文章