作为一名教职工,总不可避免地需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是整理的高一数学教案优秀3篇,希望能够帮助到大家。
教学目标:
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的`辩证关系。
教学重点:
函数的概念,函数定义域的求法。
教学难点:
函数概念的理解。
教学过程:
Ⅰ。课题导入
[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?
(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述)。
设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量。
[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:
问题一:y=1(xR)是函数吗?
问题二:y=x与y=x2x 是同一个函数吗?
(学生思考,很难回答)
[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题)。
Ⅱ。讲授新课
[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子。
在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应。
在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应。
在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应。
请同学们观察3个对应,它们分别是怎样形式的对应呢?
[生]一对一、二对一、一对一。
[师]这3个对应的共同特点是什么呢?
[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应。
[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的。 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系。
现在我们把函数的概念进一步叙述如下:(板书)
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数。
记作:y=f(x),xA
其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域。
一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应。
反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应。
二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应。
函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题。
y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数。
Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}。 所以y=x与y=x2x 不是同一个函数。
[师]理解函数的定义,我们应该注意些什么呢?
(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应。
②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可。
③集合A中数的任意性,集合B中数的惟一性。
④f表示对应关系,在不同的函数中,f的具体含义不一样。
⑤f(x)是一个符号,绝对不能理解为f与x的乘积。
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示
Ⅲ。例题分析
[例1]求下列函数的定义域。
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函数的定义域通常由问题的实际背景确定。如果只给出解析式y=f(x),而没有指明它的定义域。那么函数的定义域就是指能使这个式子有意义的实数x的集合。
解:(1)x-20,即x2时,1x-2 有意义
这个函数的定义域是{x|x2}
(2)3x+20,即x-23 时3x+2 有意义
函数y=3x+2 的定义域是[-23 ,+)
(3) x+10 x2
这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+)。
注意:函数的定义域可用三种方法表示:不等式、集合、区间。
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几 种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集R;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合。
例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数。
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定。
[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示。例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值。
下面我们来看求函数式的值应该怎样进行呢?
[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可。
[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!
[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同。
[师]生乙的回答完整吗?
[生]完整!(课本上就是如生乙所述那样写的)。
[师]大家说,判定两个函数是否相同的依据是什么?
[生]函数的定义。
[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?
(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)
(无人回答)
[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!
(生恍然大悟,我们怎么就没想到呢?)
[例2]求下列函数的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域。
对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域。
对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法。
解:(1)yR
(2)y{1,0,-1}
(3)画出y=x2+4x+3(-31)的图象,如图所示,
当x[-3,1]时,得y[-1,8]
Ⅳ。课堂练习
课本P24练习17.
Ⅴ。课时小结
本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法。学习函数定义应注意的问题及求定义域时的各种情形应该予以重视。(本小结的内容可由学生自己来归纳)
Ⅵ。课后作业
课本P28,习题1、2. 文 章来
本学期我担任了高一18、23两个班的数学教学工作,现对本学期教育教学工作总结如下:
一、准确把握班级学情状况,注重因材施教
由于今年我所带的两个班级差距很大,因此给教学带来一定的困难,其中18班学生层次较好一些,因此讲课内容与23班略有调整,上课注重抓双基落实,理论联系实际,关注数学情境的建立,突出数学的应用价值,习题难度有一定的梯度,在教学过程中,我们根据新课标的要求准确把握教学的难度。23班学生层次相对要差一些,因此教学过程中时刻注重激发学生学习兴趣,帮助他们树立信心。针对学生基础普遍较差,接受比较慢的实际情况,我们采取了低起点、小步子的教学策略,强化基础,习题设置难度偏低,把复杂的问题简单化,增强了他们的自信心。响应级部号召,落实培优补差措施,切实抓好分类推进。培优一定要立足学生实际,不能搞拔苗助长。为了保护优等生的学习热情,我们在日常教学过程中结合教学进度,适当为学有余力的部分学生布置一些稍微难一点的题目。
引导优等生克服浮燥、急功近利、眼高手低等不良倾向,扎扎实实的夯实基础,努力培养综合、灵活运用所学知识解决实际问题的能力。在加强个别指导的同时,帮助他们选择必要的课外辅导资料,开阔了他们的知识视野,培养了他们的自学能力。针对学困生的特点,我们首先帮助他们树立学好数学的信心,在布置作业时,采取分层次的要求,对学习困难生适当降低要求。及时了解他们学习中的困难,特别是克服对数学的畏惧心理。在对学生个别指导时,重在解决他们会而不对的问题,向学生介绍科学的学习方法,培养他们良好的学习习惯。在对学生个别指导时,我们着重解决他们会而不对的问题,向学生介绍科学的学习方法,培养他们良好的学习习惯。
二、认真钻研新课程标准,提高课堂教学质量
我已是第二轮教授高中数学新课程标准的课程,但是对我们来说还有许多的困惑,为了提高对它的认识水平,数学学科组经常在一起研讨新课程标准。通过每次的讨论研究,每人对教材的基本理念,设计思路框架,,课程目标及课程实施建议有了更深的认识,准确的把握了新教材的知识结构和编写意图,认识提高到了新的层面。新的高中数学教材在数学应用和联系实际方面有很好的突破,提供了基本内容的实际背景,反映了数学的应用价值,新教材中设有大量的“阅读材料”“课题学习”“社会调查”“信息技术应用”的内容,供学生选学,培养了学生应用所学知识解决实际问题的能力。
平时注重合理调整教学内容,及时进行查缺补漏,我们这半年对教学内容进行了合理的整编、重组,使得既重点突出,结构合理,又节省了课时。重视各部分内容之间的联系,结合新授课内容及时查缺补漏。我们本学期本着必修一、必修四的顺序讲课。而必修四又按着第一章再第三章的顺序进行,打算下学期先讲必修五第三章,这样可以把三角部分集中学完,有利于学生们的集中掌握。我们结合新授课内容及时进行了查缺补漏,帮助学生把断了的知识链衔接好,使得后继学习事半功倍。在学习集合部分时要用到一些不等式的解法,因此把一些常用的一元二次不等式,简单的分式串插讲解,不等式初中所学二次函数是我们本学期学习一元二次不等式解法的基础,可是大部分学生忘得一干二净,因此也作了补充。
三、坚持集体备课
我们数学学科组长期坚持集体备课,注重教研的实际效果,集体备课并不局限于固定的形式,分层设计内容丰富的课外作业、教法切磋、一题多解、学情分析等“一得”交流都是我们经常随机教研的话题。注重课堂教学设计,认真进行试题研究,在集体备课过程中,我们非常重视对课堂教学设计和试题的研究,对新课程下的高中数学教学的课堂教学模式进行了广泛的探讨。
经过半年的努力工作,两个班的期末成绩都很理想,教学成果也得到了学生和家长的认可。在今后的教学工作中我还会再接再厉,在教学上投入更多精力,争取使学生成绩更进一步。
20xx.01.18
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。